FAMILIES OF EXPOSING MAPS IN STRICTLY PSEUDOCONVEX DOMAINS

ARKADIUSZ LEWANDOWSKI

Let $G \subset \mathbb{C}^n$ be a domain and let $\zeta \in \partial G$. We say that ζ is a globally strongly convex boundary point of G if ∂G is of class \mathcal{C}^2 and strongly convex at ζ , and $\overline{G} \cap T_{\zeta}(\partial G) = \{\zeta\}$, where $T_{\zeta}(\partial G)$ denotes the tangent hyperplane of ∂G at ζ . It is known (cf. [2]) that

Theorem 0.1. If G is strictly pseudoconvex and has boundary of class C^2 , then for every $\zeta \in \partial G$ there exist a neighbourhood \hat{G} of \overline{G} and a holomorphic embedding $h : \hat{G} \to \mathbb{C}^n$ such that $h(\zeta)$ is a globally strongly convex boundary point of h(G).

Such an h is called an *exposing mapping of* G at ζ . The following question has been formulated in [1]:

Problem 0.2. Let $\rho : \mathbb{D} \times \mathbb{C}^n \to \mathbb{R}$ be a plurisubharmonic function of class $\mathcal{C}^k, k \in \mathbb{N}, k \geq 2$. Assume that for any $t \in \mathbb{D}$ the truncated function $\rho|_{\{t\}\times\mathbb{C}^n}$ is strictly plurisubharmonic and globally defines a bounded strictly pseudoconvex domain $G_t := \{w \in \mathbb{C}^n : \rho(t, w) < 0\}$. This latter can be understood as a family of strictly pseudoconvex domains with boundaries of class \mathcal{C}^k over \mathbb{D} . Do there exist \mathcal{C}^{k-2} -continuously varying family $(h_{t,\zeta})_{t\in\mathbb{D},\zeta\in\partial G_t}$ of exposing maps for G_t at $\zeta \in \partial G_t$?

We present the following (see [3])

Theorem 0.3. Let $(G_t)_{t\in\mathbb{D}}$ be a family of strictly pseudoconvex domains as in Problem 0.2 with k = 2. Let $\sigma \in (0,1)$. Take an R > 0 such that $\bigcup_{t\in\sigma\overline{\mathbb{D}}}\overline{G}_t \subset\subset \mathbb{B}(0,R)$. Assume that there exist a \mathcal{C}^2 -continuous family $(\gamma_{t,\zeta})_{t\in\sigma\overline{\mathbb{D}},\zeta\in\partial G_t}$ of smooth embedded arcs $[0,1] \to \mathbb{C}^n$ such that $\gamma_{t,\zeta}(0) =$ $\zeta, \gamma_{t,\zeta}(1) \in \mathbb{S}^{2n-1}(R)$ and $\gamma_{t,\zeta}(x) \in \mathbb{C}^n \setminus (\overline{G_t} \cup \mathbb{S}^{2n-1}(R)), x \in (0,1)$, for all $t \in \sigma\overline{\mathbb{D}}$ and $\zeta \in \partial G_t$. Then there exist a family $(h_{t,\zeta})_{t\in\sigma\overline{\mathbb{D}},\zeta\in\partial G_t}$ of exposing maps for G_t at ζ , continuous with respect to all variables.

Here and below $\mathbb{B}(a, R)$ stands for the open ball in \mathbb{C}^n with center at a and radius R > 0, and $\mathbb{S}^{2n-1}(R) := \partial \mathbb{B}(0, R)$.

Remark 0.4. Our assumption concerning the C^2 -continuity of the family $(\gamma_{t,\zeta})_{t\in\sigma\overline{\mathbb{D}},\zeta\in\partial G_t}$ should be understood in the following way:

For each t let Γ_t be a neighbourhood of ∂G_t with $\nabla r_t \neq 0$ on Γ_t , where $r_t := \rho(t, \cdot)$ and ∇r_t denotes its gradient. The neighbourhoods Γ_t may be chosen to depend in a \mathcal{C}^2 -continuous way on t.

ARKADIUSZ LEWANDOWSKI

Then there exist positive constants $\sigma' \in (\sigma, 1)$ and $\tilde{\varepsilon}$ such that the family $(\gamma_{t,\zeta})_{t\in\sigma\overline{\mathbb{D}},\zeta\in\partial G_t}$ may be extended to a \mathcal{C}^2 -continuous family

$$(\gamma_{t,\zeta})_{t\in\sigma'}\mathbb{D},\zeta\in\bigcup_{|\kappa|<\tilde{\varepsilon}}\partial G_t^{(\kappa)}$$

of smooth embedded arcs $[0,1] \to \mathbb{C}^n$ such that $\gamma_{t,\zeta}(0) = \zeta, \gamma_{t,\zeta}(1) \in \mathbb{S}^{2n-1}(R)$ and $\gamma_{t,\zeta}(x) \in \mathbb{C}^n \setminus (\overline{G_t^{(\kappa)}} \cup \mathbb{S}^{2n-1}(R)), x \in (0,1)$, for all $t \in \sigma' \mathbb{D}$ and $\zeta \in \partial G_t^{(\kappa)}, |\kappa| < \tilde{\varepsilon}$. Here, for small $|\kappa|$ we have put

$$G_t^{(\kappa)} := (G_t \setminus \Gamma_t) \cup \{ z \in \Gamma_t : r_t(z) < \kappa \}.$$

References

- F. Deng, Q. Guan, L. Zhang, Properties of squeezing functions and global transformations of bounded domains, Trans. Amer. Math. Soc. 368 (4) (2016), 2679-2696.
- K. Diederich, J.E. Fornæss, E.F. Wold, Exposing points on the boundary of strictly pseudoconvex or a locally convexifiable domain of finite 1-type, J. Geom. Anal. 24 (2014), 2124-2134.
- 3. A. Lewandowski, Families of exposing maps in strictly pseudoconvex domains, J. Geom. Anal., to appear.