The talk was devoted to the proof of the following theorem due to Kirchheim and Preiss:

Let μ be a regular Borel measure on \mathbb{R}^n . Suppose that for every r > 0 and every $x, y \in spt(\mu)$ one has

$$\mu(B_r(x)) = \mu(B_r(y)),$$

where $B_r(y)$ denotes the Euclidean ball of radius r centered at y. Then the support of μ is either the whole \mathbb{R}^n or is equal to the zero set of a real-analytic function (and is hence a real-analytic subvariety of \mathbb{R}^n).

Examples of such measures are the Lebesgue measure on any affine subspace of \mathbb{R}^n . Another nontrivial example is the 3-dimensional Lebesgue measure on the light cone

$$\{x\in \mathbb{R}^4|\ x_4^2=x_1^2+x_2^2+x_3^2\}.$$