ON A FAMILY OF QUASIMETRIC SPACES IN GENERALIZED POTENTIAL THEORY

RAFAŁ CZYŻ

Let X be a non-empty set, and let $d : X \times X \to [0, \infty)$ be a function that satisfies:

(1) d(x,y) = 0 if, and only if, x = y;

(2) d(x,y) = d(y,x), for all $x, y \in X$;

(3) there exists a constant $C \ge 1$ such that

$$d(x,y) \le C(d(x,z) + d(z,y))$$

for all $x, y, z \in X$.

We shall call d for a quasimetric, and the pair (X, d) for a quasimetric space.

Let $n \geq 2, 1 \leq m \leq n$, and assume that $\Omega \subset \mathbb{C}^n$ is a *m*-hyperconvex domain. For $u, v \in \mathcal{E}_{p,m}(\Omega)$ and p > 0 let us define

$$\mathcal{J}_p(u,v) = \left(\int_{\Omega} |u-v|^p (\mathbf{H}_m(u) + \mathbf{H}_m(v))\right)^{\frac{1}{p+m}}$$

We shall prove that the set of *m*-subharmonic function with function \mathcal{J}_p , i.e. the space $(\mathcal{SH}_M(\Omega), \mathcal{J}_p)$ is the quasimetric space.

We shall also prove the following convergence results in the space $(\mathcal{E}_{p,m}(\Omega), \mathcal{J}_p)$:

(1) If $\mathcal{J}_p(u_j, u) \to 0$, as $j \to \infty$, then $u_j \to u$ in $L^{p+m}(\Omega)$.

(2) If $\mathcal{J}_p(u_j, u) \to 0$, as $j \to \infty$, then $u_j \to u$ in capacity cap_m .

(3) The inverse implications of the above results are not, in general valid.

(4) If $\mathcal{J}_p(u_j, u) \to 0$, as $j \to \infty$, then $\mathrm{H}_m(u_j) \to \mathrm{H}_m(u)$ weakly.

 $\mathcal{M}_p = \{ \mu : \mu \text{ is a non-negative Radon measure on } \Omega \text{ such that } \}$

 $H_m(u) = \mu \text{ for some } u \in \mathcal{E}_{p,m} \}.$

The following result concerning stability is true for *m*-subharmonic functions. Let $n \geq 2, 1 \leq m \leq n$, and assume that $\Omega \subset \mathbb{C}^n$ is a *m*-hyperconvex domain and let $\mu \in \mathcal{M}_p$. If $0 \leq f, f_j \leq 1$ are measurable functions such that $f_j \to f$ in $L^1_{loc}(\mu)$, as $j \to +\infty$, then $\mathcal{J}_p(U(f_j\mu), U(f\mu)) \to 0$, where $U(\mu)$ is the unique solution to the following Dirichlet problem: $\mathrm{H}_m(U(\mu)) = \mu$.

Finally we are going to show that the corresponding result holds also in the case of compact Kähler manifold. Let $n \ge 2$, p > 0, and let $1 \le m \le n$. Assume that (X, ω) is a connected and compact Kähler manifold of complex dimension n, where ω is a Kähler form on X such that $\int_X \omega^n = 1$. For $u, v \in \mathcal{E}_{p,m}(X, \omega)$ and we define

$$\mathbf{I}_p(u,v) = \left(\int_X |u-v|^p (\mathbf{H}_m(u) + \mathbf{H}_m(v))\right)^{\frac{1}{p+m}}$$

We proved that the pair $(\mathcal{E}_{p,m}(X,\omega), \mathbf{I}_p)$ is a complete quasimetric space.