Stahl's theorem (solving a conjecture by Bessis-Moussa-Villani) can be stated in several equivalent forms. Some of them include:

Theorem: Let A and B be positive definite Hermitian matrices. Then for every $m \in \mathbb{N}$ the polynomial

$$
t \longmapsto \operatorname{tr}\left[(A+t B)^{m}\right]
$$

has nonnegative coefficients
Theorem: Leta A, B be Hermitian matrices of dimension n. Assume $B \geq 0$. Then the function

$$
\mathbb{R} \ni t \longmapsto \operatorname{tr}\left(e^{A-t B}\right)
$$

is completely monotone i.e. can be written as

$$
\int_{0}^{\infty} e^{-s t} d \mu_{A, B}(s)
$$

for some positive measure $\mu_{A, B}$.
While special cases of the above results were known, the full proof appeared only in Stahl's paper.

In the talk a sketch of the proof was presented. It made crucial use of the equation

$$
g(\lambda, t)=\operatorname{det}\left(\lambda I_{n}-(A-t B)\right)=0
$$

for $t \in \mathbb{C}$. If g is irreducible as a polynomial of 2 variables (if not we take an irreducible factor if it) the solution $\lambda(t)$ is a multivalued holomorphic function. Using this and basic complex analysis the existence of a (non-signed) measure $\mu_{A, B}$ follows easily. Then a subtle analysis made on the Riemann domain associated to λ justifies the nonnegativity of $\mu_{A, B}$.

