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This talk, spanning over three meetings (13.05.2024, 20.05.2024, 27.05.2024),
is the ultimate one in the joint effort to understand the paper of Terence Tao
on the following conjecture of Sendov:

Let

P (z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0 = an

n∏
j=1

(z − zj)

be a complex polynomial (P ∈ P) of degree n ≥ 2 with all its zeros in the
closed unit disc D (i.e., zj ∈ D, j = 1, . . . , n).

Conjecture of Sendov’1958: For each j ∈ {1, . . . , n}, the closed disc
D(zj; 1) contains a critical point of P .

The result of Terence Tao is: There exists n0 ∈ N such that for all poly-
nomials of degree n > n0, satisfying the assumptions, Sendov’s conjecture
holds.

An explicit bound on n0 is not known, and even if it was possible to refine
the arguments of Tao to yield a precise value of n0, it would be far too large
to give conclusive result for the full Sendov’s conjecture, which remains open.

We present:
The Reduction of the general problem: It is enough to consider the situ-

ation where f is a monic polynomial and the zero zj (for fixed j) is real and
non-negative (zj = a ∈ [0, 1]).

The main result [Theorem 1.3 in the paper]. Let n range over a sequence
of natural numbers going to infinity. For each n in this sequence, let f = f (n)

be a monic polynomial of degree n with all zeros in D(0, 1), and let a = a(n) ∈
[0, 1] be such that f(a) = 0. Suppose also that, for every n in the sequence,
f ′ has no zeros in D(a, 1) (so, f (n) ∈ P is a sequence of counterexamples).
Then, one can derive a contradiction.

We get a sequence a(n) ∈ [0, 1]. After passing to a subsequence we may
WLOG assume that a(n) → a(∞) ∈ [0, 1]. There are three cases of qualita-
tively different natures:

� a(∞) ∈ (0, 1)

� a(∞) = 0

� a(∞) = 1

(In increasing order of difficulty)
On the 13th of May we presented:
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� Introduction of the notions.

� Some discussion of general nature on the result.

� The “toolbox” ([Lemma 1.6 in the paper]) on the relations between
the Logarithmic potentials, Cauchy transforms and the distribution of
zeros of the polynomials in the “would be” counterexample sequence
and their derivatives.

� A lemma [Theorem 1.10 in the paper] on the description of the lim-
iting measures (weak limits of convex combinations of Dirac deltas,
concentrated at the roots of f and f ′).

On the 20th of May we presented:

� A theorem [Theorem 3.1 in the paper], which covers the case when
a(∞) = 0.

� A technical lemma [Lemma 5.2 in the paper] on the preliminary bounds
of f and f ′.

� A lemma [Proposition 5.3 in the paper] on the description of the cluster
set of the zeros of (a subsequence of) the derivatives of f .

� A lemma [Proposition 5.4 in the paper] on the approximation of f and
f ′ outside of the so defined cluster set.

On the 27th of May we presented:

� A technical lemma [Corollary 5.5 in the paper], which says that the
zeros of f lie very close to a level set of the logarithmic potential of ζ.

� A long and technical lemma [Proposition 5.6 in the paper] on the fine
control on ζ.

� The final proof of Theorem 1.3 in the case a(∞) = 1.

The presentation follows very closely the exposition in T.Tao, Sendov’s
conjecture for sufficiently-high-degree polynomials, Acta Math., 229 (2022),
347− 392, DOI:10.4310/ACTA.2022.v229.n2.a3

with an effort to explain all the technicalities.
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