An extension theorem with analytic singularities for generalized (\mathbf{N}, \mathbf{k})-crosses.

Arkadiusz Lewandowski

Abstract.

Let D_{j} be a Riemann domain over $\mathbb{C}^{n_{j}}$ and let $\varnothing \neq A_{j} \subset D_{j}$ for $j=1, \ldots, N$. For $k \in\{1, \ldots, N\}$ let $I(N, k):=\left\{\alpha=\left(\alpha_{1}, \ldots, \alpha_{N}\right) \in\{0,1\}^{N}:|\alpha|=k\right\}$, where $|\alpha|:=\alpha_{1}+\ldots+\alpha_{N}$. Put

$$
\mathcal{X}_{\alpha, j}:=\left\{\begin{array}{ll}
D_{j}, & \text { if } \alpha_{j}=1 \\
A_{j}, & \text { if } \alpha_{j}=0
\end{array}, \quad \mathcal{X}_{\alpha}:=\prod_{j=1}^{N} \mathcal{X}_{\alpha, j} .\right.
$$

For $\alpha \in I(N, k)$ such that $\alpha_{j_{1}}=\ldots=\alpha_{j_{k}}=1, \alpha_{i_{1}}=\ldots=\alpha_{i_{N-k}}=0$, where $j_{1}<\ldots<j_{k}$ and $i_{1}<\ldots<i_{N-k}$, put

$$
D_{\alpha}:=\prod_{s=1}^{k} D_{\alpha_{j_{s}}}, \quad A_{\alpha}:=\prod_{s=1}^{N-k} A_{\alpha_{i_{s}}} .
$$

For $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathcal{X}_{\alpha}$, where α is as above, put $a_{\alpha}^{0}:=\left(a_{\alpha_{i_{1}}}, \ldots, a_{\alpha_{i_{N-k}}}\right) \in A_{\alpha}$. Analogously, define $a_{\alpha}^{1}:=\left(a_{\alpha_{j_{1}}}, \ldots, a_{\alpha_{j_{k}}}\right) \in D_{\alpha}$. For any $a=\left(a_{1}, \ldots, a_{N}\right) \in \prod_{j=1}^{N} A_{j}$ and $\alpha \in I(N, k)$ define
$\boldsymbol{i}_{a, \alpha}=\left(\boldsymbol{i}_{a, \alpha, 1}, \ldots, \boldsymbol{i}_{a, \alpha, N}\right): D_{\alpha} \rightarrow \mathcal{X}_{\alpha}, \quad \boldsymbol{i}_{a, \alpha, j}(z):=\left\{\begin{array}{ll}z_{j}, & \text { if } \alpha_{j}=1 \\ a_{j}, & \text { if } \alpha_{j}=0\end{array}, \quad j=1, \ldots, N\right.$.
Similarly, for any $b=\left(b_{1}, \ldots, b_{N}\right) \in \prod_{j=1}^{N} D_{j}$ and $\alpha \in I(N, k)$ define
$\boldsymbol{l}_{b, \alpha}=\left(\boldsymbol{l}_{b, \alpha, 1}, \ldots, \boldsymbol{l}_{b, \alpha, N}\right): A_{\alpha} \rightarrow \mathcal{X}_{\alpha}, \quad \boldsymbol{l}_{b, \alpha, j}(z):=\left\{\begin{array}{ll}z_{j}, & \text { if } \alpha_{j}=0 \\ b_{j}, & \text { if } \alpha_{j}=1\end{array}, \quad j=1, \ldots, N\right.$.
Definition 0.1. For any $\alpha \in I(N, k)$ let $\Sigma_{\alpha} \subset A_{\alpha}$. We define a generalized (N, k)-cross

$$
\mathbf{T}_{N, k}:=\mathbb{T}_{N, k}\left(\left(A_{j}, D_{j}\right)_{j=1}^{N},\left(\Sigma_{\alpha}\right)_{\alpha \in I(N, k)}\right)=\bigcup_{\alpha \in I(N, k)}\left\{a \in \mathcal{X}_{\alpha}: a_{\alpha}^{0} \notin \Sigma_{\alpha}\right\}
$$

and its center

$$
\mathfrak{C}\left(\mathbf{T}_{N, k}\right):=\mathbf{T}_{N, k} \cap\left(A_{1} \times \ldots \times A_{N}\right)
$$

Definition 0.2. Let

$$
\widehat{\mathbf{X}}_{N, k}=\widehat{\mathbb{X}}_{N, k}\left(\left(A_{j}, D_{j}\right)_{j=1}^{N}\right):=\left\{\left(z_{1}, \ldots, z_{N}\right) \in D_{1} \times \ldots D_{N}: \sum_{j=1}^{N} h_{A_{j}, D_{j}}^{\star}\left(z_{j}\right)<k\right\} .
$$

Definition 0.3. For a relatively closed set $M \subset \mathbf{T}_{N, k}{ }^{1}$ we say that a function $f: \mathbf{T}_{N, k} \backslash M \rightarrow \mathbb{C}$ is separately holomorphic on $\mathbf{T}_{N, k} \backslash M$ if for every $\alpha \in I(N, k)$ and for every $a \in \prod_{j=1}^{N} A_{j}$ with $a_{\alpha}^{0} \in A_{\alpha} \backslash \Sigma_{\alpha}$ the function

$$
D_{\alpha} \backslash M_{a_{\alpha}^{0}} \ni z \mapsto f\left(\boldsymbol{i}_{a, \alpha}(z)\right)
$$

is holomorphic, where $M_{a_{\alpha}^{0}}:=\left\{z \in D_{\alpha}: \boldsymbol{i}_{a_{\alpha}^{0}, \alpha}(z) \in M\right\}$. In this case we write $f \in \mathcal{O}_{s}\left(\mathbf{T}_{N, k} \backslash M\right)$.

[^0]We denote by $\mathcal{O}_{s}^{c}\left(\mathbf{T}_{N, k} \backslash M\right)$ the space of all $f \in \mathcal{O}_{s}\left(\mathbf{T}_{N, k} \backslash M\right)$ such that for any $\alpha \in I(N, k)$ and for every $b \in \prod_{j=1}^{N} D_{j}$ the function

$$
A_{\alpha} \backslash\left(\Sigma_{\alpha} \cup M_{b_{\alpha}^{1}}\right) \ni z \mapsto f\left(\boldsymbol{l}_{b, \alpha}(z)\right)
$$

is continuous, where $M_{b_{\alpha}^{1}}:=\left\{z \in A_{\alpha}: \boldsymbol{l}_{b_{\alpha}^{1}, \alpha}(z) \in M\right\}$.
We will prove the following
Theorem 0.4 (Extension theorem for generalized (N, k)-crosses with analytic singularities). Let D_{j} be a Riemann domain of holomorphy over $\mathbb{C}^{n_{j}}, A_{j} \subset D_{j}$ be locally pluriregular, $j=1, \ldots, N$, and let $\Sigma_{\alpha} \subset A_{\alpha}$ be pluripolar, $\alpha \in I(N, k)$. Let $\mathbf{X}_{N, k}:=\mathbb{X}_{N, k}\left(\left(A_{j}, D_{j}\right)_{j=1}^{N}\right), \mathbf{T}_{N, k}:=\mathbb{T}_{N, k}\left(\left(A_{j}, D_{j}\right)_{j=1}^{N},\left(\Sigma_{\alpha}\right)_{\alpha \in I(N, k)}\right)$. Define $M:=\mathbf{T}_{N, k} \cap S$, where S is an analytic subset of $\widehat{\mathbf{X}}_{N, k}$ with $\operatorname{codim} S \geq 1$ and let $\mathcal{F}:=\mathcal{O}_{s}^{c}\left(\mathbf{T}_{N, k} \backslash M\right)$. Denote by \widehat{M} the union of all irreducible components of S of codimension one. Then:

- for any $f \in \mathcal{F}$ there exists an $\widehat{f} \in \mathcal{O}\left(\widehat{\mathbf{X}}_{N, k} \backslash \widehat{M}\right)$ such that $\widehat{f}=f$ on $\mathbf{T}_{N, k} \backslash M$,
- \widehat{M} is singular with respect to the family $\{\widehat{f}: f \in \mathcal{F}\}$,
- $\widehat{f}\left(\widehat{\mathbf{X}}_{N, k} \backslash \widehat{M}\right) \subset f\left(\mathbf{T}_{N, k} \backslash M\right)$ for any $f \in \mathcal{F}$.

Moreover, if $S=\varnothing$, then for every $f \in \mathcal{F}$ there exists an $\widehat{f} \in \mathcal{O}\left(\widehat{\mathbf{X}}_{N, k}\right)$ such that $\widehat{f}=f$ on $\mathbf{T}_{N, k}$ and $\widehat{f}\left(\widehat{\mathbf{X}}_{N, k}\right) \subset f\left(\mathbf{T}_{N, k}\right)$. In this case the assumption that D_{j} 's are domains of holomorphy is not necessary.

[^0]: ${ }^{1}$ We allow $M=\varnothing$ here

