An extension theorem with analytic singularities for generalized (N,k)-crosses.

Arkadiusz Lewandowski

Abstract.

Let D_j be a Riemann domain over \mathbb{C}^{n_j} and let $\emptyset \neq A_j \subset D_j$ for j = 1, ..., N. For $k \in \{1, ..., N\}$ let $I(N, k) := \{\alpha = (\alpha_1, ..., \alpha_N) \in \{0, 1\}^N : |\alpha| = k\}$, where $|\alpha| := \alpha_1 + ... + \alpha_N$. Put

$$\mathcal{X}_{\alpha,j} := \begin{cases} D_j, & \text{if } \alpha_j = 1 \\ A_j, & \text{if } \alpha_j = 0 \end{cases}, \quad \mathcal{X}_{\alpha} := \prod_{i=1}^N \mathcal{X}_{\alpha,j}.$$

For $\alpha \in I(N,k)$ such that $\alpha_{j_1} = \ldots = \alpha_{j_k} = 1, \alpha_{i_1} = \ldots = \alpha_{i_{N-k}} = 0$, where $j_1 < \ldots < j_k$ and $i_1 < \ldots < i_{N-k}$, put

$$D_{\alpha} := \prod_{s=1}^{k} D_{\alpha_{j_s}}, \quad A_{\alpha} := \prod_{s=1}^{N-k} A_{\alpha_{i_s}}.$$

For $a = (a_1, \ldots, a_n) \in \mathcal{X}_{\alpha}$, where α is as above, put $a_{\alpha}^0 := (a_{\alpha_{i_1}}, \ldots, a_{\alpha_{i_{N-1}}}) \in A_{\alpha}$.

Analogously, define $a_{\alpha}^1 := (a_{\alpha_{j_1}}, \dots, a_{\alpha_{j_k}}) \in D_{\alpha}$. For any $a = (a_1, \dots, a_N) \in \prod_{j=1}^N A_j$ and $\alpha \in I(N, k)$ define

$$m{i}_{a,lpha}=(m{i}_{a,lpha,1},\ldots,m{i}_{a,lpha,N}):D_lpha o \mathcal{X}_lpha,\quad m{i}_{a,lpha,j}(z):=egin{cases} z_j, & ext{if }lpha_j=1\ a_j, & ext{if }lpha_j=0 \end{cases},\quad j=1,\ldots,N.$$

Similarly, for any $b=(b_1,\ldots,b_N)\in\prod_{j=1}^N D_j$ and $\alpha\in I(N,k)$ define

$$\mathbf{l}_{b,\alpha} = (\mathbf{l}_{b,\alpha,1}, \dots, \mathbf{l}_{b,\alpha,N}) : A_{\alpha} \to \mathcal{X}_{\alpha}, \quad \mathbf{l}_{b,\alpha,j}(z) := \begin{cases} z_j, & \text{if } \alpha_j = 0 \\ b_j, & \text{if } \alpha_j = 1 \end{cases}, \quad j = 1, \dots, N.$$

Definition 0.1. For any $\alpha \in I(N,k)$ let $\Sigma_{\alpha} \subset A_{\alpha}$. We define a generalized (N,k)-cross

$$\mathbf{T}_{N,k} := \mathbb{T}_{N,k}((A_j, D_j)_{j=1}^N, (\Sigma_\alpha)_{\alpha \in I(N,k)}) = \bigcup_{\alpha \in I(N,k)} \{a \in \mathcal{X}_\alpha : a_\alpha^0 \notin \Sigma_\alpha\}$$

and its center

$$\mathfrak{C}(\mathbf{T}_{N,k}) := \mathbf{T}_{N,k} \cap (A_1 \times \ldots \times A_N).$$

Definition 0.2. Let

$$\widehat{\mathbf{X}}_{N,k} = \widehat{\mathbb{X}}_{N,k}((A_j, D_j)_{j=1}^N) := \{(z_1, \dots, z_N) \in D_1 \times \dots D_N : \sum_{i=1}^N h_{A_j, D_j}^{\star}(z_j) < k\}.$$

Definition 0.3. For a relatively closed set $M \subset \mathbf{T}_{N,k}^{-1}$ we say that a function $f: \mathbf{T}_{N,k} \setminus M \to \mathbb{C}$ is separately holomorphic on $\mathbf{T}_{N,k} \setminus M$ if for every $\alpha \in I(N,k)$ and for every $a \in \prod_{j=1}^{N} A_j$ with $a_{\alpha}^0 \in A_{\alpha} \setminus \Sigma_{\alpha}$ the function

$$D_{\alpha} \setminus M_{a_{\alpha}^0} \ni z \mapsto f(\boldsymbol{i}_{a,\alpha}(z))$$

is holomorphic, where $M_{a^0_{\alpha}}:=\{z\in D_{\alpha}: \boldsymbol{i}_{a^0_{\alpha},\alpha}(z)\in M\}$. In this case we write $f\in\mathcal{O}_s(\mathbf{T}_{N,k}\setminus M)$.

¹We allow $M = \emptyset$ here.

We denote by $\mathcal{O}_s^c(\mathbf{T}_{N,k} \setminus M)$ the space of all $f \in \mathcal{O}_s(\mathbf{T}_{N,k} \setminus M)$ such that for any $\alpha \in I(N,k)$ and for every $b \in \prod_{j=1}^N D_j$ the function

$$A_{\alpha} \setminus (\Sigma_{\alpha} \cup M_{b_{\alpha}^{1}}) \ni z \mapsto f(\boldsymbol{l}_{b,\alpha}(z))$$

is continuous, where $M_{b^1_{\alpha}} := \{z \in A_{\alpha} : \mathbf{l}_{b^1_{\alpha},\alpha}(z) \in M\}.$

We will prove the following

Theorem 0.4 (Extension theorem for generalized (N,k)-crosses with analytic singularities). Let D_j be a Riemann domain of holomorphy over \mathbb{C}^{n_j} , $A_j \subset D_j$ be locally pluriregular, $j = 1, \ldots, N$, and let $\Sigma_{\alpha} \subset A_{\alpha}$ be pluripolar, $\alpha \in I(N,k)$. Let $\mathbf{X}_{N,k} := \mathbb{X}_{N,k}((A_j,D_j)_{j=1}^N), \mathbf{T}_{N,k} := \mathbb{T}_{N,k}((A_j,D_j)_{j=1}^N,(\Sigma_{\alpha})_{\alpha \in I(N,k)})$. Define $M := \mathbf{T}_{N,k} \cap S$, where S is an analytic subset of $\widehat{\mathbf{X}}_{N,k}$ with codim $S \geq 1$ and let $\mathcal{F} := \mathcal{O}_s^c(\mathbf{T}_{N,k} \setminus M)$. Denote by \widehat{M} the union of all irreducible components of S of codimension one. Then:

- for any $f \in \mathcal{F}$ there exists an $\widehat{f} \in \mathcal{O}(\widehat{\mathbf{X}}_{N,k} \setminus \widehat{M})$ such that $\widehat{f} = f$ on $\mathbf{T}_{N,k} \setminus M$,
- \widehat{M} is singular with respect to the family $\{\widehat{f}: f \in \mathcal{F}\}\$,
- $\widehat{f}(\widehat{\mathbf{X}}_{N,k} \setminus \widehat{M}) \subset f(\mathbf{T}_{N,k} \setminus M)$ for any $f \in \mathcal{F}$.

Moreover, if $S = \emptyset$, then for every $f \in \mathcal{F}$ there exists an $\widehat{f} \in \mathcal{O}(\widehat{\mathbf{X}}_{N,k})$ such that $\widehat{f} = f$ on $\mathbf{T}_{N,k}$ and $\widehat{f}(\widehat{\mathbf{X}}_{N,k}) \subset f(\mathbf{T}_{N,k})$. In this case the assumption that D_j 's are domains of holomorphy is not necessary.