POLYNOMIAL CONVEXITY, POSITIVE CURRENTS, AND POLETSKY DISCS

PIOTR JUCHA

Let
$$K \subset \mathbb{C}^n$$
 be a compact set. Define its *polynomial hull*:

 $\widehat{K} := \{ z \in \mathbb{C}^n : |p(z)| \le \sup_K |p| \text{ for every polynomial } p \}.$

Let $\Omega \subset \mathbb{C}^n$ be a domain. A probability measure μ with $\operatorname{supp} \mu \subset \subset \Omega$ is called a *Jensen measure* (for $PSH(\Omega)$) at x if

$$\varphi(x) \leq \int \varphi_\Omega \, d\mu$$

for any $PSH(\Omega)$ (and we write $\mu \in J_x(\Omega)$).

Theorem 1. For a compact set $K \subset \mathbb{C}^n$ and a point $x \notin K$ the following conditions are equivalent:

- (a) $x \in \widehat{K}$;
- (b) there exists a probability measure μ with supp $\mu \subset K$ such that for every polynomial p

$$\log |p(x)| \le \int \log |p| \, d\mu;$$

(c) there exists a probability measure μ with $\operatorname{supp} \mu \subset K$ such that for $\varphi \in \operatorname{PSH}(\mathbb{C}^n)$

$$\varphi(x) \le \int \varphi \, d\mu;$$

(d) there exists a nonnegative current of bidegree (n - 1, n - 1) with compact support such that $x \in \text{supp } T$ and

$$dd^c T = \mu - \delta_x$$

for some Jensen measure $\mu \in J_x(\mathbb{C}^n)$ and the Dirac measure δ_x ;

(e) there exists a (or for any) Runge domain Ω ⊃ K the following holds: for every open set U ⊃ K and every ε > 0 there is a holomorphic disc f : D → Ω satisfying f(0) = x and

$$m(\{\lambda \in \partial \mathbb{D} : f(\lambda) \notin U\}) < \varepsilon,$$

where m denotes Lebesgue measure on the boundary of the unit disc $\mathbb{D} \subset \mathbb{C}$.

The equivalence (a) \iff (d) is due to Duval and Sibony ([DS]), while (a) \iff (e) was proven by Poletsky ([P]). Wold ([W]) showed that (d) follows easily from (e). (For (a) \iff (b) \iff (c) see [S].)

References

- [DS] J. Duval, N. Sibony, Polynomial convexity, rational convexity, and currents, Duke Math. J. 79 (1995), 487–513.
- [P] E. A. Poletsky, Holomorphic currents, Indiana Univ. Math. J. 42 (1993), 85–144.
- [S] N. Sibony, Prolongements des fonctions holomorphes bornée et métrique de Carathéodory, Invent. Math. 29 (1975), 205–230.
- [W] E. F. Wold, A note on polynomial convexity: Poletsky disks, Jensen measures and positive currents, J. Geom. Anal. (published online: 23 April 2010).

The talk given at the seminar Geometric Function Theory on 24 January 2011.