RIGID CHARACTERIZATIONS OF PSEUDOCONVEX DOMAINS

NIKOLAI NIKOLOV AND PASCAL J. THOMAS

ABSTRACT. We proof that an open set D in \mathbb{C}^n is pseudoconvex if and only if for any $z \in D$ the largest balanced domain centered at z and contained in D is pseudoconvex, and consider analogues of that characterization in the linearly convex case.

Introduction.

The main purpose of this note is to characterize the pseudoconvexity of an open set D in \mathbb{C}^n in terms of pseudoconvexity of $B_{D,z}$, $z \in D$, i.e. in terms of pseudoconvexity in the "vertical" directions of H_D .

First let the balanced indicatrix of D at z as

$$I_{D,z} = \{ X \in \mathbb{C}^n : z + \lambda X \in D, if |\lambda| \le 1 \}.$$

Then we have

$$H_D = \{(z, w) \in D \times \mathbb{C}^n : w \in I_{D, z}\}.$$

This note is based on the follow theorem

Theorem 1. If an open set D in \mathbb{C}^n is not pseudoconvex, then there is a point $a \in \partial D$, say the origin and a real-valued quadratic polynomial q such that $q(a) = 0, \partial q(a) \neq 0$,

$$\sum_{j,k=1}^{n} \frac{\partial^2 q}{\partial z_j \partial \overline{z_k}} X_j \overline{X_k} < 0$$

for some vector $X \in \mathbb{C}^n$ with $\langle \partial q(a), X \rangle = 0$, and D contains the set $\{q < 0\}$ near a.

Therefore, after an affine change of coordinates, we may assume $0 \in \partial D$ and, near this point, D contains the set

 $\{a \in \mathbb{C}^n : 0 > Rez_1 + (Imz_1)^2 + |z_2|^2 + \dots + |z_{n-1}|^2 + c(Imz_n)^2 - (Rez_n)^2\},\$

where -1 < c < 1.

Then we have our main result

Theorem 2. If D is a proper open subset of \mathbb{C}^n . Then(1) \Leftrightarrow (2) \Leftrightarrow (3):

- (1) D is pseudoconvex;
- (2) H_D is pseudoconvex;
- (3) $I_{D,z}$ is pseudoconvex for any $z \in D$.