The particular property of conical plurisubharmonic measure AND SOME OF IT'S APPLICATIONS

In the following definitions we assume that D is an open subset of \mathbb{C}^n and that A is a subset of ∂D .

Def. 1. We say that D is locally \mathcal{C}^2 -smooth on A, if for every $\zeta \in A$ there exists an open neighborhood U of ζ and a function $\rho \in \mathcal{C}^2(U)$ such that $d\rho(\zeta) \neq 0$ and

$$D \cap U = \{ z \in U : \rho(\zeta) < 0 \}.$$

Def. 2. For any $\zeta \in A$ and for every $\alpha \in (1, \infty)$ we define a conical approach region $\mathcal{A}_{\alpha}(\zeta)$

$$\mathcal{A}_{\alpha}(\zeta) := \{ z \in D : |z - \zeta| < \alpha \operatorname{dist}(z, T_{\zeta}) \},$$

where T_{ζ} denotes a hyperplane tangent to ∂D at ζ .

Def. 3. For any $u: D \to \mathbb{R}$ we define

$$\widehat{u}(z) := \begin{cases} u(z) & \text{for } z \in D\\ \sup_{\alpha > 1} \limsup_{w \in \mathcal{A}_{\alpha}(\zeta), \ w \to z} u(w) & \text{for } z \in \partial D \end{cases}.$$

Def. 4. We define a conical plurisubharmonic measure of A relatively D as

$$\omega(z, A, D) := h_{A, D}^*(z),$$

where

$$h_{A,D} := \sup\{u \in \mathcal{PSH}(D) : u \leq 1 \text{ on } D, \ \hat{u} \leq 0 \text{ on } A\}$$

Def. 5. We say that a manifold $M \subset \mathbb{C}^n$ of class \mathcal{C}^2 is generic, if for every $z \in M$ a complex linear hull of $T_z M$ coincides with \mathbb{C}^n .

Def. 6. We say that a smooth, generic manifold $M \subset \mathbb{C}^n$ of class \mathcal{C}^2 is totally real, if $\dim_{\mathbb{R}} M = n.$

Def. 7. We say that $z \in \mathbb{C}^n$ is a density point relative to A, if

$$d(z) := \lim_{r \to 0} \frac{\mathrm{m}(A \cap \mathbb{B}_r(z))}{\mathrm{m}(\mathbb{B}_r(z))} = 1.$$

Main Theorem. Let $M \subset \mathbb{C}^n$ be a generic manifold of class \mathcal{C}^2 , let $D \subset \mathbb{C}^n$ be a domain such that $M \subset \partial D$ and D is locally \mathcal{C}^2 -smooth on M. Let $A \subset M$ be a measurable subset of positive measure. Then for all density points z relative to A, $\widehat{\omega}(z, A, D) = 0$.

In the first step of the proof of Main Theorem we assume that M is a totally real manifold such that $0 \in M$, 0 is a density point relative to A and $T_0M = \mathbb{R}^n$. We will need the following:

Theorem 1 (see [1]). Let $M \subset \mathbb{C}^n$ be a totally real manifold of class \mathcal{C}^2 such that $0 \in M$ and in a neighborhood \mathcal{V} of $0 \in \mathbb{C}^n$ it is given by the equation z = x + ih(x), where h is a function of class \mathcal{C}^2 defined in \mathcal{U}' - a neighborhood of $0 \in \mathbb{R}^n$ with values in \mathbb{R}^n such that h(0) = 0 and dh(0) = 0.

For a cone Γ with vertex at 0 define $W_{\Gamma,\mathcal{V}} := \{z \in \mathcal{V} : \text{ Im } z - h(\text{Re } z) \in \Gamma\}.$

Let $\Gamma' \subset \Gamma''$ be two open cones in \mathbb{R}^n with vertices at 0 such that $\Gamma' \cap \mathbb{S}^{n-1} \subset \subset \Gamma'' \cap \mathbb{S}^{n-1}$ and $W_{\Gamma'',\mathcal{V}} \subset D$.

Let $\varphi \in \mathcal{C}^{\infty}(\overline{\Delta}) \cap \mathcal{H}(\Delta)$ be such that $\varphi = 0$ on $\{e^{i\theta} \in \partial \Delta : |\theta| \leq \frac{\pi}{2}\}, \varphi < 0$ on the rest of

$$\partial \Delta \ and \ \frac{\partial(\varphi \circ u)}{\partial s}(s,\theta)|_{s=1,\theta=0} = 1, \ where \ u: [0,1] \times [-\pi,\pi] \ni (s,\theta) \mapsto se^{i\theta} \in \overline{\Delta}.$$

Then there exists an open neighborhood $\mathcal{U} \subset \mathcal{U}'$ of $0 \in \mathbb{R}^n$, an open neighborhood U of $0 \in \mathbb{R}^{n-1}$ and open neighborhood V of $0 \in \mathbb{R}^n$, a function $G \in \mathcal{C}^1(\overline{\Delta} \times U \times V)$ with values in $\overline{W}_{\Gamma'',\mathcal{V}}$ such that $G(\cdot,\zeta,\tau) \in \mathcal{O}(\Delta) \ \forall (\zeta,\tau) \in U \times V$, an open arc $\gamma \subset \partial \Delta$ with $1 \in \gamma$ and $\beta \in \mathbb{R} \setminus \{0\}$ such that the following conditions are satisfied:

- (i) for every $(\zeta, \tau) \in U \times V$ the holomorphic disc $G(\cdot, \zeta, \tau)$ is attached to M on γ , moreover, $G(\cdot, 0, 0) = 0$ on $\overline{\Delta}$,
- (ii) for every $\tau \in V$ G_{τ} : $(s, \theta, \zeta) \mapsto G(se^{i\theta}, \zeta, \tau)$ defines for each fixed $s \in [\frac{1}{2}, 1]$ a diffeomorphism of $\{se^{i\theta} : \theta \in \gamma\} \times U$ into \mathbb{C}^n , in particular it maps $\{\theta : e^{i\theta} \in \gamma\} \times U$ onto an open neighborhood of θ in M. Moreover, for $e^{i\theta} \in \gamma$, $s \in (0, 1)$, $\zeta \in U$, $|\zeta| \leq 4|\tau|$

$$\frac{\partial \operatorname{Re} \, G_{\tau}(s,\theta,\zeta)}{\partial(\theta,\zeta)} = \beta \frac{\partial(\varphi \circ u)(s,\theta)}{\partial s} |\tau| \cdot \operatorname{Id}_{\theta} + \operatorname{Id}_{\zeta} + o(|\tau|),$$

(iii) there exists a conformal map ψ which maps Δ onto a Jordan domain $E \subset \Delta$ with smooth boundary such that $\gamma \subset \partial E$, $\psi(1) = 1$ and for $e^{i\theta} \in \gamma$, $s \in (0,1)$, $\zeta \in U$, $|\zeta| \leq 4|\tau|$

$$\frac{\partial \operatorname{Im} G(u(s,\theta),\zeta,\tau)}{\partial \tau} = \varphi(\psi(u(s,\theta))) \cdot \operatorname{Id}_{\tau} + o(\tau).$$

References

 B. Coupet, Construction de disques analytiques et régularité de fonctions holomorphes au bord, Math. Z. 209 (2), 1992, pp 179 - 204.