A Remark on Gromov's method and Bennequin's problem

Denote $D_R^+ := \{ z \in \mathbb{C} : |z| < R, \operatorname{Re} z \ge 0 \}.$

Twierdzenie 1. Let $L \subset \mathbb{C}^N$ be a totally real compact *m*-dimensional \mathcal{C}^{∞} submanifold. Let $R > 0, r \in (1, \infty) \setminus \mathbb{N}, (f_k)_{k=1}^{\infty} \subset \mathcal{C}^{r+1}(D_R^+, \mathbb{C}^N)$ be such that

- f_k(D⁺_R ∩ ℝ) ⊂ L,
 f_k tends uniformly on D⁺_R to some f : D⁺_R → ℂ^N,
 g_k := ∂f_k/∂λ tends to some g : D⁺_R → ℂ^N in the space C^r(D⁺_R, ℂ^N)

Then $f \in \mathcal{C}^{r+1}(D_R^+, \mathbb{C}^N)$, $g = \frac{\partial f}{\partial \overline{\lambda}} \in \mathcal{C}^r(D_R^+, \mathbb{C}^N)$, and for every $\rho \in (0, R)$ there is $f_k \to f$ in the space $\mathcal{C}^{r+1}(\overline{D_{\rho}^+}, \mathbb{C}^N)$.