A Remark on Gromov's method and Bennequin's problem

Denote $D_{R}^{+}:=\{z \in \mathbb{C}:|z|<R, \operatorname{Re} z \geq 0\}$.
Twierdzenie 1. Let $L \subset \mathbb{C}^{N}$ be a totally real compact m-dimensional \mathcal{C}^{∞} submanifold. Let $R>0, r \in(1, \infty) \backslash \mathbb{N},\left(f_{k}\right)_{k=1}^{\infty} \subset \mathcal{C}^{r+1}\left(D_{R}^{+}, \mathbb{C}^{N}\right)$ be such that

- $f_{k}\left(D_{R}^{+} \cap \mathbb{R}\right) \subset L$,
- f_{k} tends uniformly on D_{R}^{+}to some $f: D_{R}^{+} \rightarrow \mathbb{C}^{N}$,
- $g_{k}:=\frac{\partial f_{k}}{\partial \lambda}$ tends to some $g: D_{R}^{+} \rightarrow \mathbb{C}^{N}$ in the space $\mathcal{C}^{r}\left(D_{R}^{+}, \mathbb{C}^{N}\right)$

Then $f \in \mathcal{C}^{r+1}\left(D_{R}^{+}, \mathbb{C}^{N}\right), g=\frac{\partial f}{\partial \bar{\lambda}} \in \mathcal{C}^{r}\left(D_{R}^{+}, \mathbb{C}^{N}\right)$, and for every $\rho \in(0, R)$ there is $f_{k} \rightarrow f$ in the space $\mathcal{C}^{r+1}\left(\overline{D_{\rho}^{+}}, \mathbb{C}^{N}\right)$.

