A HARTOGS-TYPE EXTENSION THEOREM FOR GENERALIZED (N,K)-CROSSES WITH PLURIPOLAR SINGULARITIES

MAŁGORZATA ZAJĘCKA

Abstract

The aim of the talk is to present an extension theorem for (N, k)-crosses with pluripolar singularities.

1. Definitions and main results

Definition 1.1 (Relative extremal function). Let X be a Riemann domain over \mathbb{C}^{n} and let $A \subset X$. The relative extremal function of A with respect to X is a function

$$
\mathbf{h}_{A, X}:=\sup \left\{u \in \mathcal{P S H}(X): u \leq 1,\left.u\right|_{A} \leq 0\right\} .
$$

For an open set $Y \subset X$ we define $\mathbf{h}_{A, Y}:=\mathbf{h}_{A \cap Y, Y}$.
Definition 1.2. Let D be a Riemann domain over \mathbb{C}^{n}. A set $A \subset D$ is called pluriregular at a point $a \in \bar{A}$ if $\mathbf{h}_{A, U}=0$ for any open neighborhood U of the point a.
We call A locally pluriregular if $A \neq \varnothing$ and A is pluriregular at every point $a \in A$.
Let D_{j} be a Riemann domain over $\mathbb{C}^{n_{j}}$ and let $A_{j} \subset D_{j}$ be locally pluriregular, $j=$ $1, \ldots, N$, where $N \geq 2$. For $\alpha=\left(\alpha_{1}, \ldots, \alpha_{N}\right) \in\{0,1\}^{N}$ define:

$$
\begin{aligned}
& \mathcal{X}_{\alpha}:=\mathcal{X}_{1, \alpha_{1}} \times \ldots \times \mathcal{X}_{N, \alpha_{N}}, \\
& \mathcal{X}_{j, \alpha_{j}}:=\left\{\begin{array}{lll}
D_{j} & \text { when } & \alpha_{j}=1 \\
A_{j} & \text { when } & \alpha_{j}=0
\end{array}, \quad j=1, \ldots, N .\right.
\end{aligned}
$$

When no confusion arise we will use the following convetnion: for $A \subset \prod_{j \in I} D_{j}$ and $B \subset \prod_{j \in J} D_{j}$, where $I \cup J=\{1, \ldots, N\}$, by $A \times B$ we will denote a product $C_{1} \times \ldots \times C_{N}$, where

$$
C_{j}=\left\{\begin{array}{lll}
A_{j} & \text { for } & j \in I \\
B_{j} & \text { for } & j \in J
\end{array} .\right.
$$

To simplify the notation let us define families

$$
\mathcal{I}_{k}^{N}:=\left\{\alpha \in\{0,1\}^{N}:|\alpha|=k\right\}, \quad \mathcal{J}_{\leq k}^{N}:=\left\{\alpha \in\{0,1\}^{N}: 1 \leq|\alpha| \leq k\right\} .
$$

Definition 1.3. For a $k \in\{1, \ldots, N\}$ we define an (N, k)-cross

$$
\mathbf{X}_{N, k}=\mathbb{X}_{N, k}\left(\left(A_{j}, D_{j}\right)_{j=1}^{N}\right):=\bigcup_{\alpha \in \mathcal{I}_{k}^{N}} \mathcal{X}_{\alpha}
$$

For $\alpha \in \mathcal{J}_{\leq k}^{N}$ let $\Sigma_{\alpha} \subset \prod_{j: \alpha_{j}=0} A_{j}$ and put

$$
\mathcal{X}_{\alpha}^{\Sigma}:=\left\{z \in \mathcal{X}_{\alpha}: \quad z_{\alpha} \notin \Sigma_{\alpha}\right\}, \quad \alpha \in \mathcal{J}_{\leq k}^{N},
$$

where z_{α} denotes a projection of z on $\prod_{j: \alpha_{j}=0} D_{j}$.

Definition 1.4. We define a generalized (N, k)-cross $\mathbf{T}_{N, k}$

$$
\mathbf{T}_{N, k}=\mathbb{T}_{N, k}\left(\left(A_{j}, D_{j}\right)_{j=1}^{N},\left(\Sigma_{\alpha}\right)_{\alpha \in \mathcal{I}_{k}^{N}}\right):=\bigcup_{\alpha \in \mathcal{I}_{k}^{N}} \mathcal{X}_{\alpha}^{\Sigma}
$$

and a generalized (N, k)-cross $\mathbf{Y}_{N, k}$

$$
\mathbf{Y}_{N, k}=\mathbb{Y}_{N, k}\left(\left(A_{j}, D_{j}\right)_{j=1}^{N},\left(\Sigma_{\alpha}\right)_{\alpha \in \mathcal{J}_{\leq k}^{N}}\right):=\bigcup_{\alpha \in \mathcal{J}_{\leq k}^{N}} \mathcal{X}_{\alpha}^{\Sigma}
$$

For $k=1$ we call $\mathbb{X}_{N, 1}\left(\left(A_{j}, D_{j}\right)_{j=1}^{N}\right)$ an N-fold cross \mathbf{X} and we use the following notation

$$
\mathbf{X}=\mathbb{X}\left(A_{1}, \ldots, A_{N} ; D_{1}, \ldots, D_{N}\right)=\mathbb{X}\left(\left(A_{j}, D_{j}\right)_{j=1}^{N}\right)=\bigcup_{j=1}^{N}\left(A_{j}^{\prime} \times D_{j} \times A_{j}^{\prime \prime}\right)
$$

where

$$
\begin{aligned}
& A_{j}^{\prime}:=A_{1} \times \ldots \times A_{j-1}, j=2, \ldots, N, \\
& A_{j}^{\prime \prime}:=A_{j+1} \times \ldots \times A_{N}, j=1, \ldots, N-1, \\
& A_{1}^{\prime} \times D_{1} \times A_{1}^{\prime \prime}:=D_{1} \times A_{1}^{\prime \prime} \\
& A_{N}^{\prime} \times D_{N} \times A_{N}^{\prime \prime}:=A_{N}^{\prime} \times D_{N} .
\end{aligned}
$$

For $\Sigma_{j} \subset A_{j}^{\prime} \times A_{j}^{\prime \prime}, j=1, \ldots, N$ put

$$
\mathcal{X}_{j}:=\left\{\left(a_{j}^{\prime}, z_{j}, a_{j}^{\prime \prime}\right) \in A_{j}^{\prime} \times D_{j} \times A_{j}^{\prime \prime}:\left(a_{j}^{\prime}, a_{j}^{\prime \prime}\right) \notin \Sigma_{j}\right\}
$$

where

$$
\begin{aligned}
& a_{j}^{\prime}:=\left(a_{1}, \ldots, a_{j-1}\right), j=2, \ldots, N, \\
& a_{j}^{\prime \prime}:=\left(a_{j+1}, \ldots, a_{N}\right), j=1, \ldots, N-1, \\
& \left(a_{1}^{\prime}, z_{1}, a_{1}^{\prime \prime}\right):=\left(z_{1}, a_{1}^{\prime \prime}\right), \\
& \left(a_{N}^{\prime}, z_{N}, a_{N}^{\prime \prime}\right):=\left(a_{N}^{\prime}, z_{N}\right) .
\end{aligned}
$$

We call $\mathbb{T}_{N, 1}\left(\left(A_{j}, D_{j}, \Sigma_{j}\right)_{j=1}^{N}\right)=\bigcup_{j=1}^{N} \mathcal{X}_{j}$ a generalized N-fold cross \mathbf{T}.

Definition 1.5. For (N, k)-crosses we define their centers as

$$
\begin{aligned}
& c\left(\mathbf{X}_{N, k}\right):=A_{1} \times \ldots \times A_{N}, \\
& c\left(\mathbf{T}_{N, k}\right):=\mathbf{T}_{N, k} \cap\left(A_{1} \times \ldots \times A_{N}\right), \\
& c\left(\mathbf{Y}_{N, k}\right):=\mathbf{Y}_{N, k} \cap\left(A_{1} \times \ldots \times A_{N}\right) .
\end{aligned}
$$

Definition 1.6. For a cross $\mathbf{X}_{N, k}=\mathbb{X}_{N, k}\left(\left(A_{j}, D_{j}\right)_{j=1}^{N}\right)$ we define its hull

$$
\widehat{\mathbf{X}}_{N, k}=\widehat{\mathbb{X}}_{N, k}\left(\left(A_{j}, D_{j}\right)_{j=1}^{N}\right):=\left\{\left(z_{1}, \ldots, z_{N}\right) \in D_{1} \times \ldots \times D_{N}: \sum_{j=1}^{N} \mathbf{h}_{A_{j}, D_{j}}\left(z_{j}\right)<k\right\}
$$

where $\mathbf{h}_{B, D}$ denotes relative extremal function of B with respect to D.
For an $\alpha \in \mathcal{J}_{\leq k}^{N}$ and for an $a \in\left(\prod_{j: \alpha_{j}=0} A_{j}\right)$ define a function

$$
\begin{aligned}
& \iota_{\alpha}^{a}=\left(\iota_{\alpha, 1}^{a}, \ldots, \iota_{\alpha, N}^{a}\right): \prod_{j: \alpha_{j}=1} D_{j} \rightarrow \mathcal{X}_{\alpha}, \\
& \iota_{\alpha, j}^{a}(z):=\left\{\begin{array}{lll}
z_{j} & \text { when } & \alpha_{j}=1 \\
a_{j} & \text { when } & \alpha_{j}=0
\end{array}, \quad j=1, \ldots, N .\right.
\end{aligned}
$$

Let $\mathbf{W}_{N, k} \in\left\{\mathbf{T}_{N, k}, \mathbf{Y}_{N, k}\right\}$ and let $M \subset \mathbf{W}_{N, k}$. For an $\alpha \in \mathcal{J}_{\leq k}^{N}$ and for an $a \in \prod_{j: \alpha_{j}=0} A_{j}$ let $M_{a, \alpha}$ denote a fiber

$$
M_{a, \alpha}:=\left\{z \in \prod_{j: \alpha_{j}=1} D_{j}: \iota_{\alpha}^{a}(z) \in M\right\} .
$$

Definition 1.7. Let $M \subset \mathbf{T}_{N, k}$ be such that for all $\alpha \in \mathcal{I}_{k}^{N}$ and for all $a \in\left(\prod_{j: \alpha_{j}=0} A_{j}\right) \backslash \Sigma_{\alpha}$ the set $\left(\prod_{j: \alpha_{j}=1} D_{j}\right) \backslash M_{a, \alpha}$ is open. A function $f: \mathbf{T}_{N, k} \backslash M \rightarrow \mathbb{C}$ is called separately holomorphic on $\mathbf{T}_{N, k} \backslash M\left(f \in \mathcal{O}_{\mathcal{S}}\left(\mathbf{T}_{N, k} \backslash M\right)\right.$), if for all $\alpha \in \mathcal{I}_{k}^{N}$ and for all $a \in\left(\prod_{j: \alpha_{j}=0} A_{j}\right) \backslash$ Σ_{α}, the function

$$
\begin{equation*}
\left(\prod_{j: \alpha_{j}=1} D_{j}\right) \backslash M_{a, \alpha} \ni z \mapsto f \circ \iota_{\alpha}^{a}=: f_{a, \alpha}(z) \tag{*}
\end{equation*}
$$

is holomorphic.
For generalized (N, k)-cross $\mathbf{Y}_{N, k}$ we state an analogical definition.
Definition 1.8. Let $M \subset \mathbf{Y}_{N, k}$ be such that for all $\alpha \in \mathcal{J}_{\leq k}^{N}$ and for all $a \in\left(\prod_{j: \alpha_{j}=0} A_{j}\right) \backslash \Sigma_{\alpha}$ the set $\left(\prod_{j: \alpha_{j}=1} D_{j}\right) \backslash M_{a, \alpha}$ is open. A function $f: \mathbf{Y}_{N, k} \backslash M \rightarrow \mathbb{C}$ is called separately holomorphic on $\mathbf{Y}_{N, k} \backslash M\left(f \in \mathcal{O}_{\mathcal{S}}\left(\mathbf{Y}_{N, k} \backslash M\right)\right.$), if for all $\alpha \in \mathcal{I}_{k}^{N}$ and for all $a \in$ $\left(\prod_{j: \alpha_{j}=0} A_{j}\right) \backslash \Sigma_{\alpha}$, the function $(*)$ is holomorphic.

For $\alpha \in \mathcal{J}_{\leq k}^{N}$ and for $b \in \prod_{j: \alpha_{j}=1} D_{j}$ define a function

$$
\begin{aligned}
& \kappa_{\alpha}^{b}=\left(\kappa_{\alpha, 1}^{b}, \ldots, \kappa_{\alpha, N}^{b}\right): \prod_{j: \alpha_{j}=0} A_{j} \rightarrow \mathcal{X}_{\alpha}, \\
& \kappa_{\alpha, j}^{b}(z):=\left\{\begin{array}{lll}
z_{j} & \text { when } & \alpha_{j}=0 \\
b_{j} & \text { when } & \alpha_{j}=1
\end{array}, \quad j=1, \ldots, N .\right.
\end{aligned}
$$

Let $M \subset \mathbf{T}_{N, k}$. For $\alpha \in \mathcal{J}_{\leq k}^{N}$ and for $b \in \prod_{j: \alpha_{j}=1} D_{j}$ let $M_{b, \alpha}^{k}$ denote a fiber

$$
M_{b, \alpha}^{\kappa}:=\left\{z \in \prod_{j: \alpha_{j}=0} A_{j}: \kappa_{\alpha}^{b}(z) \in M\right\}
$$

Definition 1.9. Let $M \subset \mathbf{T}_{N, k}$ be such that for all $\alpha \in \mathcal{I}_{k}^{N}$ and for all $a \in\left(\prod_{j: \alpha_{j}=0} A_{j}\right) \backslash \Sigma_{\alpha}$ the set $\left(\prod_{j: \alpha_{j}=1} D_{j}\right) \backslash M_{a, \alpha}$ is open. By $\mathcal{O}_{\mathcal{S}}^{c}\left(\mathbf{T}_{N, k} \backslash M\right)$ we will denote a space of functions
$f \in \mathcal{O}_{\mathcal{S}}\left(\mathbf{T}_{N, k} \backslash M\right)$ such that for all $\alpha \in \mathcal{I}_{k}^{N}$ and for all $b \in\left(\prod_{j: \alpha_{j}=1} D_{j}\right)$, the function

$$
\left(\prod_{j: \alpha_{j}=0} A_{j}\right) \backslash\left(\Sigma_{\alpha} \cup M_{b, \alpha}^{\kappa}\right) \ni z \mapsto f \circ \kappa_{\alpha}^{b}=: f_{b, \alpha}^{\kappa}(z)
$$

is continuous.
Theorem 1.10 (Extension theorem for (N, k)-crosses with pluripolar singularities). Let D_{j} be a Riemann domain of holomorphy over $\mathbb{C}^{n_{j}}, A_{j} \subset D_{j}$ be locally pluriregular, $j=1, \ldots, N$. For $\alpha \in \mathcal{I}_{k}^{N}$ let $\Sigma_{\alpha} \subset \prod_{j: \alpha_{j}=0} A_{j}$, be pluripolar. Let

$$
\mathbf{X}_{N, k}:=\mathbb{X}_{N, k}\left(\left(A_{j}, D_{j}\right)_{j=1}^{N}\right), \quad \mathbf{T}_{N, k}:=\mathbb{T}_{N, k}\left(\left(A_{j}, D_{j}\right)_{j=1}^{N},\left(\Sigma_{\alpha}\right)_{\alpha \in \mathcal{I}_{k}^{N}}\right)
$$

Let M be a relatively closed, pluripolar subset of $\mathbf{T}_{N, k}$ such that for all $\alpha \in \mathcal{I}_{k}^{N}$ and all $a \in\left(\prod_{j: \alpha_{j}=0} A_{j}\right) \backslash \Sigma_{\alpha}$ the fiber $M_{a, \alpha}$ is pluripolar. Let

$$
\mathcal{F}:=\left\{\begin{array}{cc}
\mathcal{O}_{\mathcal{S}}\left(\mathbf{X}_{N, k} \backslash M\right), & \text { if for any } \alpha \in \mathcal{I}_{k}^{N} \text { we have } \Sigma_{\alpha}=\varnothing \\
\mathcal{O}_{\mathcal{S}}^{c}\left(\mathbf{T}_{N, k} \backslash M\right), & \text { otherwise }
\end{array}\right.
$$

Then there exists a relatively closed, pluripolar set $\widehat{M} \subset \widehat{\mathbf{X}}_{N, k}$ and a generalized (N, k) cross $\mathbf{T}_{N, k}^{\prime}:=\mathbb{T}_{N, k}\left(\left(A_{j}, D_{j}\right)_{j=1}^{N},\left(\Sigma_{\alpha}^{\prime}\right)_{\alpha \in \mathcal{I}_{k}^{N}}\right) \subset \mathbf{T}_{N, k}$ with $\Sigma_{\alpha} \subset \Sigma_{\alpha}^{\prime} \subset \prod_{j: \alpha_{j}=0} A_{j}, \Sigma_{\alpha}^{\prime}$ pluripolar, $\alpha \in \mathcal{I}_{k}^{N}$, such that:

- $\widehat{M} \cap\left(c\left(\mathbf{T}_{N, k}\right) \cup \mathbf{T}_{N, k}^{\prime}\right) \subset M$,
- for any $f \in \mathcal{F}$ there exists a function $\widehat{f} \in \mathcal{O}\left(\widehat{\mathbf{X}}_{N, k} \backslash \widehat{M}\right)$ such that $\widehat{f}=f$ on $\left(c\left(\mathbf{T}_{N, k}\right) \cup \mathbf{T}_{N, k}^{\prime}\right) \backslash M$,
- \widehat{M} is singular with respect to $\{\widehat{f}: f \in \mathcal{F}\}\left({ }^{(1)}\right.$.

Theorem 1.11. Let D_{j} be a Riemann domain of holomorphy over $\mathbb{C}^{n_{j}}, A_{j} \subset D_{j}$ be locally pluriregular, $j=1, \ldots, N$. For $\alpha \in \mathcal{J}_{\leq k}^{N}$ let Σ_{α} be a pluripolar subset of $\prod_{j: \alpha_{j}=0} A_{j}$. Let

$$
\begin{gathered}
\mathbf{X}_{N, k}:=\mathbb{X}_{N, k}\left(\left(A_{j}, D_{j}\right)_{j=1}^{N}\right), \quad \mathbf{T}_{N, k}:=\mathbb{T}_{N, k}\left(\left(A_{j}, D_{j}\right)_{j=1}^{N},\left(\Sigma_{\alpha}\right)_{\alpha \in \mathcal{I}_{k}^{N}}\right) \\
\mathbf{Y}_{N, k}:=\mathbb{Y}_{N, k}\left(\left(A_{j}, D_{j}\right)_{j=1}^{N},\left(\Sigma_{\alpha}\right)_{\alpha \in \mathcal{J}_{\leq k}^{N}}\right)
\end{gathered}
$$

$\mathbf{W}_{N, k} \in\left\{\mathbf{X}_{N, k}, \mathbf{T}_{N, k}, \mathbf{Y}_{N, k}\right\}, M \subset c\left(\mathbf{W}_{N, k}\right)$ and $\mathcal{F} \subset\left\{f: c\left(\mathbf{W}_{N, k}\right) \backslash M \rightarrow \mathbb{C}\right\}$ be such that:
(T1) M is pluripolar ${ }^{(2)}$
(T2) for any $\alpha \in \mathcal{J}_{\leq k}^{N}$ and any $a \in\left(\prod_{j: \alpha_{j}=0} A_{j}\right) \backslash \Sigma_{\alpha}$ the fiber $M_{a, \alpha}$ is pluripolar,
(T3) for any $\alpha \in \mathcal{J}_{\leq k}^{N}$ and any $a \in\left(\prod_{j: \alpha_{j}=0} A_{j}\right) \backslash \Sigma_{\alpha}$ there exists a closed, pluripolar set

$$
\left.\widetilde{M}_{a, \alpha} \subset \prod_{j: \alpha_{j}=1} D_{j} \text { such that } \widetilde{M}_{a, \alpha} \stackrel{\jmath: \alpha_{j}=0}{ } \prod_{j: \alpha_{j}=1} A_{j} \subset M_{a, \alpha}\right\}^{(3)}
$$

[^0](T4) for any $a \in c\left(\mathbf{W}_{N, k}\right) \backslash M$ there exists an $r>0$ such that for all $f \in \mathcal{F}$ there exists an $f_{a} \in \mathcal{O}(\mathbb{P}(a, r))$ with $f_{a}=f$ on $\mathbb{P}(a, r) \cap\left(c\left(\mathbf{W}_{N, k}\right) \backslash M\right)$,
(T5) for any $f \in \mathcal{F}$, any $\alpha \in \mathcal{J}_{\leq k}^{N}$ and any $a \in\left(\prod_{j: \alpha_{j}=0} A_{j}\right) \backslash \Sigma_{\alpha}$ there exists a function $\widetilde{f}_{a, \alpha} \in \mathcal{O}\left(\prod_{j: \alpha_{j}=1} D_{j} \backslash \widetilde{M}_{a, \alpha}\right)$ such that $\widetilde{f}_{a, \alpha}=f_{a, \alpha}^{j}$ on $\left(\prod_{j: \alpha_{j}=1} A_{j}\right) \backslash M_{a, \alpha}{ }^{(4)}$.
Then there exists a relatively closed, pluripolar set $\widehat{M} \subset \widehat{\mathbf{X}}_{N, k}$ such that:

- $\widehat{M} \cap c\left(\mathbf{W}_{N, k}\right) \subset M$,
- for any $f \in \mathcal{F}$ there exists $\widehat{f} \in \mathcal{O}\left(\widehat{\mathbf{X}}_{N, k} \backslash \widehat{M}\right)$ such that $\widehat{f}=f$ on $c\left(\mathbf{W}_{N, k}\right) \backslash M$,
- \widehat{M} is singular with respect to $\{\widehat{f}: f \in \mathcal{F}\}$,
- if for all $\alpha \in \mathcal{J}_{\leq k}^{N}$ and all $a \in\left(\prod_{j: \alpha_{j}=0} A_{j}\right) \backslash \Sigma_{\alpha}$ we have $\widetilde{M}_{a, \alpha}=\varnothing$, then $\widehat{M}=\varnothing$,
- if for all $\alpha \in \mathcal{J}_{\leq k}^{N}$ and all $a \in\left(\prod_{j: \alpha_{j}=0} A_{j}\right) \backslash \Sigma_{\alpha}$ the set $\widetilde{M}_{a, \alpha}$ is thin in $\prod_{j: \alpha_{j}=1} D_{j}$, then \widehat{M} is analytic in $\widehat{\mathbf{X}}_{N, k}$.
Proposition 1.12. Let D_{j}, A_{j} and Σ_{α} be as in Theorem 1.11. Let

$$
\begin{gathered}
\mathbf{X}_{N, k}:=\mathbb{X}_{N, k}\left(\left(A_{j}, D_{j}\right)_{j=1}^{N}\right), \quad \mathbf{T}_{N, k}:=\mathbb{T}_{N, k}\left(\left(A_{j}, D_{j}\right)_{j=1}^{N},\left(\Sigma_{\alpha}\right)_{\alpha \in \mathcal{I}_{k}^{N}}\right), \\
\mathbf{Y}_{N, k}:=\mathbb{Y}_{N, k}\left(\left(A_{j}, D_{j}\right)_{j=1}^{N},\left(\Sigma_{\alpha}\right)_{\alpha \in \mathcal{J}_{k}^{N}}\right), \\
\mathbf{W}_{N, k} \in\left\{\mathbf{X}_{N, k}, \mathbf{T}_{N, k}, \mathbf{Y}_{N, k}\right\} . \text { Let } M \subset \mathbf{W}_{N, k} \text { and } \mathcal{F} \subset \mathcal{O}_{\mathcal{S}}\left(\mathbf{W}_{N, k} \backslash M\right) \text { be such that: }
\end{gathered}
$$

(P1) $M \cap c\left(\mathbf{W}_{N, k}\right)$ is pluripolar,
(P2) for any $\alpha \in \mathcal{J}_{\leq k}^{N}$ and any $a \in\left(\prod_{j: \alpha_{j}=0} A_{j}\right) \backslash \Sigma_{\alpha}$ the fiber $M_{a, \alpha}$ is pluripolar and relatively closed in $\prod_{j: \alpha_{j}=1} D_{j}$,
(P3) for any $a \in c\left(\mathbf{W}_{N, k}\right) \backslash M$ there exists an $r>0$ such that for all $f \in \mathcal{F}$ there exists a function $f_{a} \in \mathcal{O}(\mathbb{P}(a, r))$ with $f_{a}=f$ on $\mathbb{P}(a, r) \cap\left(c\left(\mathbf{W}_{N, k}\right) \backslash M\right)$.
Then there exists a relatively closed, pluripolar set $\widehat{M} \subset \widehat{\mathbf{X}}_{N, k}$ such that:

- $\widehat{M} \cap c\left(\mathbf{W}_{N, k}\right) \subset M$,
- for any $f \in \mathcal{F}$ there exists $\widehat{f} \in \mathcal{O}\left(\widehat{\mathbf{X}}_{N, k} \backslash \widehat{M}\right)$ such that $\widehat{f}=f$ on $c\left(\mathbf{W}_{N, k}\right) \backslash M$,
- \widehat{M} is singular with respect to $\{\widehat{f}: f \in \mathcal{F}\}$,
- if $M=\varnothing$, then $\widehat{M}=\varnothing$,
- if for all $\alpha \in \mathcal{J}_{\leq k}^{N}$ and all $a \in\left(\prod_{j: \alpha_{j}=0} A_{j}\right) \backslash \Sigma_{\alpha}$ the fiber $M_{a, \alpha}$ is thin in $\prod_{j: \alpha_{j}=1} D_{j}$, then \widehat{M} is analytic in $\widehat{\mathbf{X}}_{N, k}$.

2. Prerequisities

Theorem 2.1 (see JarPfl 2007, Theorem 1.1). Let D_{j} be a Riemann domain of holomorphy over $\mathbb{C}^{n_{j}}, A_{j} \subset D_{j}$ be locally pluriregular and let $\Sigma_{j} \subset A_{j}^{\prime} \times A_{j}^{\prime \prime}$ be pluripolar, $j=1, \ldots, N$. Put

$$
\mathbf{X}:=\mathbb{X}\left(\left(A_{j}, D_{j}\right)_{j=1}^{N}\right), \quad \mathbf{T}:=\mathbb{T}\left(\left(A_{j}, D_{j}, \Sigma_{j}\right)_{j=1}^{N}\right)
$$

Let $\mathcal{F} \subset\{f: c(\mathbf{T}) \backslash M \rightarrow \mathbb{C}\}$ and let $M \subset \mathbf{T}$ be such that:

- for any $j \in\{1, \ldots, N\}$ an any $\left(a_{j}^{\prime}, a_{j}^{\prime \prime}\right) \in\left(A_{j}^{\prime} \times A_{j}^{\prime \prime}\right) \backslash \Sigma_{j}$ the fiber $M_{\left(a_{j}^{\prime}, \cdot, a_{j}^{\prime \prime}\right)}$ is pluripolar,

[^1]- for any $j \in\{1, \ldots, N\}$ and any $\left(a_{\underline{j}}^{\prime}, a_{j}^{\prime \prime}\right) \in\left(A_{j}^{\prime} \times A_{j}^{\prime \prime}\right) \backslash \Sigma_{j}$ there exists a closed, pluripolar set $\widetilde{M}_{a, j} \subset D_{j}$ such that $\widetilde{M}_{a, j} \cap A_{j} \subset M_{\left(a_{j}^{\prime}, \cdot, a_{j}^{\prime \prime}\right)}$,
- for any $a \in c(\mathbf{T}) \backslash M$ there exists an $r>0$ such that for all $f \in \mathcal{F}$ there exists an $f_{a} \in \mathcal{O}(\mathbb{P}(a, r))$ with $f_{a}=f$ on $\mathbb{P}(a, r) \cap(c(\mathbf{T}) \backslash M)$ (5),
- for any $f \in \underset{\sim}{\mathcal{F}}$, any $j \in\{1, \ldots, N\}$, and any $\left(a_{j}^{\prime}, a_{j}^{\prime \prime}\right) \in\left(A_{j}^{\prime} \times A_{j}^{\prime \prime}\right) \backslash \Sigma_{j}$ there exists a function $\widetilde{f}_{a, j} \in \mathcal{O}\left(D_{j} \backslash \widetilde{M}_{a, j}\right)$ such that $\widetilde{f}_{a, j}=f\left(a_{j}^{\prime}, \cdot, a_{j}^{\prime \prime}\right)$ on $A_{j} \backslash M_{a, j}$.
Then there exists a relatively closed, pluripolar set $\widehat{M} \subset \widehat{\mathbf{X}}$ such that:
- $\widehat{M} \cap c(\mathbf{T}) \subset M$,
- for any $f \in \mathcal{F}$ there exists a function $\widehat{f} \in \mathcal{O}(\widehat{\mathbf{X}} \backslash \widehat{M})$ such that $\widehat{f}=f$ on $c(\mathbf{T}) \backslash M$,
- \widehat{M} is singular with respect to $\{\widehat{f}: f \in \mathcal{F}\}$,
- if for all $j \in\{1, \ldots, N\}$ and all $\left(a_{j}^{\prime}, a_{j}^{\prime \prime}\right) \in\left(A_{j}^{\prime} \times A_{j}^{\prime \prime}\right) \backslash \Sigma_{j}$ we have $\widetilde{M}_{a, j}=\varnothing$, then $\widehat{M}=\varnothing$,
- if for all $j \in\{1, \ldots, N\}$ and all $\left(a_{j}^{\prime}, a_{j}^{\prime \prime}\right) \in\left(A_{j}^{\prime} \times A_{j}^{\prime \prime}\right) \backslash \Sigma_{j}$ the set $\widetilde{M}_{a, j}$ is thin in D_{j}, then \widehat{M} is analytic in $\widehat{\mathbf{X}}$.

Lemma 2.2 (JarPfl 2010], Lemma 4). Let D_{j} be a Riemann domain of holomorphy over $\mathbb{C}^{n_{j}}$ and $A_{j} \subset D_{j}$ be locally pluriregular, $j=1, \ldots, N$. Then for all $z=\left(z_{1}, \ldots, z_{N}\right) \in$ $\widehat{\mathbf{X}}_{N, k}$ we have:

$$
\mathbf{h}_{\widehat{\mathbf{x}}_{N, k-1}, \widehat{\mathbf{x}}_{N, k}}(z)=\max \left\{0, \sum_{j=1}^{N} \mathbf{h}_{A_{j}, D_{j}}\left(z_{j}\right)-k+1\right\} .
$$

Theorem 2.3 (Cross theorem for (N, k)-crosses, cf. JarPfl 2011, Theorem 7.2.7). Let D_{j} be a Riemann domain of holomorphy over $\mathbb{C}^{n_{j}}$ and $A_{j} \subset D_{j}$ be locally pluriregular, $j=1, \ldots, N$. For $k \in\{1, \ldots, N\}$ let $\mathbf{X}_{N, k}:=\mathbb{X}_{N, k}\left(\left(A_{j}, D_{j}\right)_{j=1}^{N}\right)$. Then for every $f \in$ $\mathcal{O}_{\mathcal{S}}\left(\mathbf{X}_{N, k}\right)$ there exists a unique function $\widehat{f} \in \mathcal{O}\left(\widehat{\mathbf{X}}_{N, k}\right)$ such that $\widehat{f}=f$ on $\mathbf{X}_{N, k}$ and $\widehat{f}\left(\widehat{\mathbf{X}}_{N, k}\right) \subset f\left(\mathbf{X}_{N, k}\right)$.

Theorem 2.4 (Cross theorem for generalized (N, k)-crosses). Let D_{j} be a Riemann domain over $\mathbb{C}^{n_{j}}, A_{j} \subset D_{j}$ be pluriregular, $j=1, \ldots, N$. For $\alpha \in \mathcal{I}_{k}^{N}$ let Σ_{α} be a subset of $\prod_{j: \alpha_{j}=0} A_{j}$. Let

$$
\mathbf{X}_{N, k}:=\mathbb{X}_{N, k}\left(\left(A_{j}, D_{j}\right)_{j=1}^{N}\right), \quad \mathbf{T}_{N, k}:=\mathbb{T}_{N, k}\left(\left(A_{j}, D_{j}\right)_{j=1}^{N},\left(\Sigma_{\alpha}\right)_{\alpha \in \mathcal{I}_{k}^{N}}\right)
$$

Then for every $f \in \mathcal{O}_{\mathcal{S}}^{c}\left(\mathbf{T}_{N, k}\right)$ there exists $\widehat{f} \in \mathcal{O}\left(\widehat{\mathbf{X}}_{N, k}\right)$ such that $\widehat{f}=f$ on $\mathbf{T}_{N, k}$ and $\widehat{f}\left(\widehat{\mathbf{X}}_{N, k}\right) \subset f\left(\mathbf{T}_{N, k}\right)$.

3. Sketch of proof of Theorem 1.11

Lemma 3.1. Theorem 1.11 with $\mathbf{W}_{N, k}=\mathbf{X}_{N, k}$ implies Theorem 1.11 with

$$
\mathbf{W}_{N, k} \in\left\{\mathbf{T}_{N, k}, \mathbf{Y}_{N, k}\right\} .
$$

Sketch of proof of Theorem 1.11 with $\mathbf{W}_{N, k}=\mathbf{X}_{N, k}$.
Step 1. Theorem 1.11 is true for any N when $k=1$ (Theorem 2.1) and when $k=N$ (in this case we assumed the thesis).

[^2]Step 2. In particular, theorem is true for $N=2, k=1,2$. Assume we already have Theorem 1.11 for $(N-1, k)$, where $k \in\{1, \ldots, N-1\}$ and for $(N, 1), \ldots,(N, k-1)$, where $k \in\{2, \ldots, N-1\}$. We need to prove it for (N, k).

Step 3. Fix $s \in\{1, \ldots, N\}$ (to simplify the notation let $s=N$). Let

$$
Q_{N}:=\left\{a_{N} \in A_{N}: M_{\left(\cdot, a_{N}\right)} \text { is not pluripolar }\right\} .
$$

Then Q_{N} is pluripolar. Define

$$
\mathbf{X}_{N-1, k}^{(s)}:=\mathbb{X}_{N-1, k}\left(\left(A_{j}, D_{j}\right)_{j=1, j \neq s}^{N}\right), s=1, \ldots, N
$$

in particular

$$
\mathbf{X}_{N-1, k}^{(N)}=\mathbf{X}_{N-1, k}:=\mathbb{X}_{N-1, k}\left(\left(A_{j}, D_{j}\right)_{j=1}^{N-1}\right)
$$

Fix $a_{N} \in A_{N} \backslash Q_{N}$ and define a family $\left\{f\left(\cdot, a_{N}\right): f \in \mathcal{F}\right\} \subset\left\{f: c\left(\mathbf{X}_{N-1, k}\right) \rightarrow \mathbb{C}\right\}$. Then from inductive assumption we get a relatively closed pluripolar set $\widehat{M}_{a_{N}} \subset \widehat{\mathbf{X}}_{N-1, k}$ such that:

- $\widehat{M}_{a_{N}} \cap c\left(\mathbf{X}_{N-1, k}\right) \subset M_{\left(\cdot, a_{N}\right)}$,
- for any $f \in \mathcal{F}$ there exists $\widehat{f}_{a_{N}} \in \mathcal{O}\left(\widehat{\mathbf{X}}_{N-1, k} \backslash \widehat{M}_{a_{N}}\right)$ such that $\widehat{f}_{a_{N}}=f\left(\cdot, a_{N}\right)$ on $c\left(\mathbf{X}_{N-1, k}\right) \backslash M_{\left(, a_{N}\right)}$,
- $\widehat{M}_{a_{N}}$ is singular with respect to $\left\{\widehat{f}_{a_{N}}: f \in \mathcal{F}\right\}$,
- if for all $\alpha^{\prime} \in\{0,1\}^{N-1}:\left|\alpha^{\prime}\right| \leq k$ and all $a^{\prime} \in\left(\prod_{j: \alpha_{j}^{\prime}=0} A_{j}\right) \backslash \Sigma_{\alpha^{\prime}}$, we have $\widetilde{M}_{a^{\prime}, \alpha^{\prime}}=\varnothing$, then $\widehat{M}_{a_{N}}=\varnothing$,
- if for all $\alpha^{\prime} \in\{0,1\}^{N-1}:\left|\alpha^{\prime}\right| \leq k$ and all $a^{\prime} \in\left(\prod_{j: \alpha_{j}^{\prime}=0} A_{j}\right) \backslash \Sigma_{\alpha^{\prime}}$, the set $\widetilde{M}_{a^{\prime}, \alpha^{\prime}}$ is thin in $\prod_{j: \alpha_{j}^{\prime}=1} D_{j}$, then $\widehat{M}_{a_{N}}$ is analytic in $\widehat{\mathbf{X}}_{N-1, k}$.
Define a new cross

$$
\mathbf{Z}_{N}:=\mathbb{X}\left(c\left(\mathbf{X}_{N-1, k}\right), A_{N} ; \widehat{\mathbf{X}}_{N-1, k}, D_{N}\right) .
$$

Observe that \mathbf{Z}_{N} with original $M,\left(\Sigma_{\alpha}\right)_{\alpha}$ and the family \mathcal{F} satisfies all the assumptions of Theorem 1.11 with $N=2, k=1$. Then there exists an $\widehat{M}_{N} \subset \widehat{\mathbf{Z}}_{N}$, relatively closed, pluripolar, such that:

- $\widehat{M}_{N} \cap c\left(\mathbf{X}_{N, k}\right) \subset M$,
- for any $f \in \mathcal{F}$ there exists $\widehat{f}_{N} \in \mathcal{O}\left(\widehat{\mathbf{Z}}_{N} \backslash \widehat{M}_{N}\right)$ such that $\widehat{f}_{N}=f$ on $c\left(\mathbf{X}_{N, k}\right) \backslash M$,
- \widehat{M}_{N} is singular with respect to $\left\{\widehat{f}_{N}: f \in \mathcal{F}\right\}$,
- if for all $a^{\prime} \in c\left(\mathbf{X}_{N-1, k}\right) \backslash \Sigma_{(0, \ldots, 0,1)}$ we have $\widetilde{M}_{a^{\prime}}=\varnothing$ and for all $a_{N} \in A_{N} \backslash Q_{N}$ we have $\widetilde{M}_{a_{N}}=\varnothing$, then $\widehat{M}_{N}=\varnothing$,
- if for all $a^{\prime} \in c\left(\mathbf{X}_{N-1, k}\right) \backslash \Sigma_{(0, \ldots, 0,1)}$ the set $\widetilde{M}_{a^{\prime}}$ is thin in D_{N} and for all $a_{N} \in A_{N} \backslash Q_{N}$ the set $\widetilde{M}_{a_{N}}$ is thin in $\widehat{\mathbf{X}}_{N-1, k}$, then \widehat{M}_{N} is analytic in $\widehat{\mathbf{Z}}_{N}$.
We repeat the reasoning above for all $s=1, \ldots, N-1$, obtaining a family of functions $\left\{\widehat{f}_{s}\right\}_{s=1}^{N}$ such that for any $s \in\{1, \ldots, N\}$ we have $\widehat{f}_{s}=f$ on $c\left(\mathbf{X}_{N, k}\right) \backslash M$. Define a new function

$$
F_{f}(z):=\left\{\begin{array}{ccc}
\widehat{f}_{1}(z) & \text { for } & z \in \widehat{\mathbf{Z}}_{1} \backslash \widehat{M}_{1} \\
\vdots & & \\
\widehat{f}_{N}(z) & \text { for } & z \in \widehat{\mathbf{Z}}_{N} \backslash \widehat{M}_{N} \\
& 7 &
\end{array} .\right.
$$

Lemma 3.2. Function F_{f} is well defined and holomorphic on $\left(\bigcup_{s=1}^{N} \mathbf{Z}_{s}\right) \backslash\left(\bigcup_{s=1}^{N} \widehat{M}_{s}\right)$.
Step 4. Define a 2-fold cross

$$
\mathbf{Z}:=\mathbb{X}\left(\mathbf{X}_{N-1, k-1}, A_{N} ; \widehat{\mathbf{X}}_{N-1, k}, D_{N}\right) \subset \bigcup_{s=1}^{N} \mathbf{Z}_{s}
$$

a pluripolar set

$$
\widetilde{M}:=\left(\bigcup_{s=1}^{N} \widehat{M}_{s}\right) \cap\left(\mathbf{X}_{N-1, k-1} \times A_{N}\right)
$$

and a family

$$
\widetilde{\mathcal{F}}:=\left\{\widetilde{f}:=\left.F_{f}\right|_{\left(\mathbf{x}_{N-1, k-1} \times A_{N}\right) \backslash \widetilde{M}}: f \in \mathcal{F}\right\} .
$$

Then $\mathbf{Z}, \widetilde{M}$ and $\widetilde{\mathcal{F}}$ satisfy the assumptions of Theorem 1.11 with $N=1$ and $k=1$. Now from Theorem 1.11 there exists a relatively closed, pluripolar set $\widehat{M} \subset \widehat{\mathbf{Z}}=\widehat{\mathbf{X}}_{N, k}$ such that:

- $\widehat{M} \cap\left(\mathbf{X}_{N-1, k-1} \times A_{N}\right) \subset \widetilde{M}$, in particular, $\widehat{M} \cap c\left(\mathbf{X}_{N, k}\right) \subset M$,
- for any $f \in \mathcal{F}$ there exists $\widehat{f} \in \mathcal{O}\left(\widehat{\mathbf{X}}_{N, k} \backslash \widehat{M}\right)$ such that $\widehat{f}=\tilde{f}$ on $\left(\mathbf{X}_{N-1, k-1} \times\right.$ $\left.A_{N}\right) \backslash \widetilde{M}$, in particular $\widehat{f}=f$ on $c\left(\mathbf{X}_{N, k}\right) \backslash M$,
- \widehat{M} is singular with respect to $\{\widehat{f}: f \in \mathcal{F}\}$,
- if for all $z^{\prime} \in \mathbf{X}_{N-1, k-1} \backslash P \widetilde{M}_{z^{\prime}}=\varnothing$ and for all $a_{N} \in A_{N} \backslash Q \widetilde{M}_{a_{N}}=\varnothing$, then $\widehat{M}=\varnothing$,
- if for all $z^{\prime} \in \mathbf{X}_{N-1, k-1} \backslash P$ the set $\widetilde{M}_{z^{\prime}}$ is thin in D_{N} and for all $a_{N} \in A_{N} \backslash Q$ the set $\widetilde{M}_{a_{N}}$ is thin in $\widehat{\mathbf{X}}_{N-1, k}$, then \widehat{M} is analytic in $\widehat{\mathbf{Z}}$.

Sketch of proof of Lemma 3.2. Fix s and p. We want to show that $\widehat{f}_{s}=\widehat{f}_{p}$ on $\left(\mathbf{Z}_{s} \cap \mathbf{Z}_{p}\right) \backslash$ $\left(\widehat{M}_{s} \cup \widehat{M}_{p}\right)$. To simplify the notation we may assume that $s=N-1$ and $p=N$.

Step 1. Every connected component of $\mathbf{Z}_{N-1} \cap \mathbf{Z}_{N}$ contains part of the center.
Step 2. One connected component of $\widehat{\mathbf{Z}}_{N-1} \cap \widehat{\mathbf{Z}}_{N}$ contains whole $\mathbf{Z}_{N-1} \cap \mathbf{Z}_{N}$.
Step 3. Every connected component of $\widehat{\mathbf{Z}}_{N-1} \cap \widehat{\mathbf{Z}}_{N}$ with $\widehat{M}_{N-1} \cup \widehat{M}_{N}$ deleted is a domain, thus it is a connected component of $\left(\widehat{\mathbf{Z}}_{N-1} \cap \widehat{\mathbf{Z}}_{N}\right) \backslash\left(\widehat{M}_{N-1} \cup \widehat{M}_{N}\right)$.
Step 4. One connected component of $\left(\widehat{\mathbf{Z}}_{N-1} \cap \widehat{\mathbf{Z}}_{N}\right) \backslash\left(\widehat{M}_{N-1} \cup \widehat{M}_{N}\right)$ contains whole set $\left(\mathbf{Z}_{N-1} \cap \mathbf{Z}_{N}\right) \backslash\left(\widehat{M}_{N-1} \cup \widehat{M}_{N}\right)$.
Step 5. $\widehat{f}_{N-1}=\widehat{f}_{N}$ on $\left(\mathbf{Z}_{N-1} \cap \mathbf{Z}_{N}\right) \backslash\left(\widehat{M}_{N-1} \cup \widehat{M}_{N}\right)$.

References

[JarPfl 2007] M. Jarnicki, P. Pflug, A general cross theorem with singularities, Analysis Munich 27 (2007), 181-212.
[JarPfl 2010] M. Jarnicki, P. Pflug, A new cross theorem for separately holomorphic functions, Proc. Amer. Math. Soc. 138 (2010), 3923-3932.
[JarPfl 2011] M. Jarnicki, P. Pflug, Separately analytic functions, EMS Publishing House, 2011.
[Lew 2012] A. Lewandowski, An extension theorem with analytic singularities for generalized (N, k)crosses, Ann. Polon. Math. (2012) (to appear).

[^0]: ${ }^{(1)}$ That is, for all $a \in \widehat{M}$ and U_{a}-open neighborhood of a there exists $\widehat{f} \in\{\widehat{f}: f \in \mathcal{F}\}$ such that \widehat{f} does not extend holomorphically on U_{a}.
 ${ }^{(2)}$ Actually we can assume a bit less: M is such that for all $j \in\{1, \ldots, N\}$ the set $\left\{a_{j} \in A_{j}\right.$: $M_{\left(,, a_{j}, \cdot\right)}$ is not pluripolar\} is pluripolar.
 ${ }^{(3)}$ When $k=N$ we assume that there exists $\widetilde{M} \in D_{1} \times \ldots \times D_{N}$ closed, pluripolar, such that $\widetilde{M} \cap c\left(\mathbf{W}_{N, k}\right) \subset M$.

[^1]: ${ }^{(4)}$ When $k=N$ we assume that there exists $\tilde{f} \in \mathcal{O}\left(D_{1} \times \ldots \times D_{N} \backslash \widetilde{M}\right)$ such that $\tilde{f}=f$ on $c\left(\mathbf{W}_{N, k}\right) \backslash M$.

[^2]: ${ }^{(5)} \mathbb{P}(a, r)$ denotes a polydisc in Riemann domain $D_{1} \times \ldots \times D_{N}$ centered at a with radius r.

