A HARTOGS-TYPE EXTENSION THEOREM FOR GENERALIZED
(N,K)-CROSSES WITH PLURIPOLAR SINGULARITIES

MAŁGORZATA ZAJĘCKA

Abstract. The aim of the talk is to present an extension theorem for (N,k)-crosses with pluripolar singularities.

1. Definitions and main results

Definition 1.1 (Relative extremal function). Let \(X \) be a Riemann domain over \(\mathbb{C}^n \) and let \(A \subset X \). The relative extremal function of \(A \) with respect to \(X \) is a function
\[
h_{A,X} := \sup \{ u \in \mathcal{P}\mathcal{S}\mathcal{H}(X) : u \leq 1, u|_A \leq 0 \}.
\]
For an open set \(Y \subset X \) we define \(h_{A,Y} := h_{A \cap Y,Y} \).

Definition 1.2. Let \(D \) be a Riemann domain over \(\mathbb{C}^n \). A set \(A \subset D \) is called pluriregular at a point \(a \in A \) if \(h_{A,U} = 0 \) for any open neighborhood \(U \) of the point \(a \).
We call \(A \) locally pluriregular if \(A \neq \emptyset \) and \(A \) is pluriregular at every point \(a \in A \).

Let \(D_j \) be a Riemann domain over \(\mathbb{C}^n \) and let \(A_j \subset D_j \) be locally pluriregular, \(j = 1, \ldots , N \), where \(N \geq 2 \). For \(\alpha = (\alpha_1, \ldots , \alpha_N) \in \{0,1\}^N \) define:
\[
\mathcal{X}_\alpha := \mathcal{X}_{1,\alpha_1} \times \ldots \times \mathcal{X}_{N,\alpha_N},
\]
\[
\mathcal{X}_{j,\alpha_j} := \begin{cases} D_j & \text{when } \alpha_j = 1, \\ A_j & \text{when } \alpha_j = 0, \end{cases} j = 1, \ldots , N.
\]

When no confusion arise we will use the following convention: for \(A \subset \prod_{j \in I} D_j \) and \(B \subset \prod_{j \in J} D_j \), where \(I \cup J = \{1, \ldots , N\} \), by \(A \times B \) we will denote a product \(C_1 \times \ldots \times C_N \), where
\[
C_j = \begin{cases} A_j & \text{for } j \in I, \\ B_j & \text{for } j \in J. \end{cases}
\]

To simplify the notation let us define families
\[
\mathcal{I}_k^N := \{ \alpha \in \{0,1\}^N : |\alpha| = k \}, \quad \mathcal{J}_k^N := \{ \alpha \in \{0,1\}^N : 1 \leq |\alpha| \leq k \}.
\]

Definition 1.3. For a \(k \in \{1, \ldots , N\} \) we define an \((N,k) \)-cross
\[
\mathcal{X}_{N,k} = \mathcal{X}_{N,k}((A_j, D_j)_{j=1}^N) := \bigcup_{\alpha \in \mathcal{I}_k^N} \mathcal{X}_\alpha.
\]

For \(\alpha \in \mathcal{J}_k^N \) let \(\Sigma_\alpha \subset \prod_{j: \alpha_j = 0} A_j \) and put
\[
\mathcal{X}_\alpha^{\Sigma} := \{ z \in \mathcal{X}_\alpha : z_\alpha \not\in \Sigma_\alpha \}, \quad \alpha \in \mathcal{J}_k^N,
\]
where \(z_\alpha \) denotes a projection of \(z \) on \(\prod_{j: \alpha_j = 0} D_j \).
Definition 1.4. We define a generalized \((N,k)\)-cross \(T_{N,k}\)

\[
T_{N,k} = \bigcup_{\alpha \in I^N_k} \mathcal{X}_\alpha^\Sigma
\]

and a generalized \((N,k)\)-cross \(Y_{N,k}\)

\[
Y_{N,k} = \bigcup_{\alpha \in J^N_k} \mathcal{X}_\alpha^\Sigma.
\]

For \(k = 1\) we call \(X_{N,1}((A_j, D_j)_{j=1}^N)\) an \(N\)-fold cross \(X\) and we use the following notation

\[
X = X(A_1, \ldots, A_N; D_1, \ldots, D_N) = X((A_j, D_j)_{j=1}^N) = \bigcup_{j=1}^N (A_j' \times D_j \times A_j''),
\]

where

\[
A_j' := A_1 \times \ldots \times A_{j-1}, \quad j = 2, \ldots, N,
\]

\[
A_j'' := A_{j+1} \times \ldots \times A_N, \quad j = 1, \ldots, N - 1,
\]

\[
A_1' \times D_1 \times A_1'' := D_1 \times A_1'',
\]

\[
A_N' \times D_N \times A_N'' := A_N' \times D_N.
\]

For \(\Sigma_j \subset A_j' \times A_j'', j = 1, \ldots, N\) put

\[
\mathcal{X}_j := \{(a_j', z_j, a_j'') \in A_j' \times D_j \times A_j'': (a_j', a_j'') \notin \Sigma_j\},
\]

where

\[
a_j' := (a_1, \ldots, a_{j-1}), \quad j = 2, \ldots, N,
\]

\[
a_j'' := (a_{j+1}, \ldots, a_N), \quad j = 1, \ldots, N - 1,
\]

\[
(a_1', z_1, a_1'') := (z_1, a_1'),
\]

\[
a_N', z_N, a_N'') := (a_N', z_N).
\]

We call \(T_{N,1}((A_j, D_j, \Sigma_j)_{j=1}^N) = \bigcup_{j=1}^N \mathcal{X}_j\) a generalized \(N\)-fold cross \(T\).

Definition 1.5. For \((N,k)\)-crosses we define their centers as

\[
c(X_{N,k}) := A_1 \times \ldots \times A_N,
\]

\[
c(T_{N,k}) := T_{N,k} \cap (A_1 \times \ldots \times A_N),
\]

\[
c(Y_{N,k}) := Y_{N,k} \cap (A_1 \times \ldots \times A_N).
\]

Definition 1.6. For a cross \(X_{N,k} = X_{N,k}((A_j, D_j)_{j=1}^N)\) we define its hull

\[
\hat{X}_{N,k} = \bigcup_{\alpha \in I^N_k} (A_j, D_j)_{j=1}^N := \{(z_1, \ldots, z_N) \in D_1 \times \ldots \times D_N : \sum_{j=1}^N h_{A_j, D_j}(z_j) < k\},
\]

where \(h_{B,D}\) denotes relative extremal function of \(B\) with respect to \(D\).

For an \(\alpha \in J^N_k\) and for an \(a \in (\prod_{j: \alpha_j = 0} A_j)\) define a function.
Definition 1.7. Let T be holomorphic on $\prod Y$. For an $\alpha \in \mathcal{J}_{\leq N}$ and for an $a \in \prod A_j$ let $M_{a,\alpha}$ denote a fiber

$$M_{a,\alpha} := \{ z \in \prod D_j : \epsilon_a(z) \in M \}.$$

Definition 1.8. Let $M \subset T_{N,k}$ be such that for all $\alpha \in \mathcal{I}_{k}^{N}$ and for all $a \in (\prod A_j) \setminus \Sigma_{\alpha}$ the set $(\prod D_j) \setminus M_{a,\alpha}$ is open. A function $f : T_{N,k} \setminus M \to \mathbb{C}$ is called *separately holomorphic on* $T_{N,k} \setminus M$ ($f \in \mathcal{O}_{S}(T_{N,k} \setminus M)$), if for all $\alpha \in \mathcal{I}_{k}^{N}$ and for all $a \in (\prod A_j) \setminus \Sigma_{\alpha}$, the function

$$(\prod_{j : \alpha_j = 1} D_j) \setminus M_{a,\alpha} \ni z \mapsto f \circ \epsilon_a =: f_{a,\alpha}(z)$$

is holomorphic.

For generalized (N, k)-cross $Y_{N,k}$ we state an analogical definition.

Definition 1.9. Let $M \subset Y_{N,k}$ be such that for all $\alpha \in \mathcal{J}_{\leq N}$ and for all $a \in (\prod A_j) \setminus \Sigma_{\alpha}$ the set $(\prod D_j) \setminus M_{a,\alpha}$ is open. A function $f : Y_{N,k} \setminus M \to \mathbb{C}$ is called *separately holomorphic on* $Y_{N,k} \setminus M$ ($f \in \mathcal{O}_{S}(Y_{N,k} \setminus M)$), if for all $\alpha \in \mathcal{I}_{k}^{N}$ and for all $a \in (\prod A_j) \setminus \Sigma_{\alpha}$, the function $(*)$ is holomorphic.

For $\alpha \in \mathcal{J}_{\leq N}$ and for $b \in \prod D_j$ define a function

$$\kappa^b_{\alpha} = (\kappa^b_{\alpha,1}, \ldots, \kappa^b_{\alpha,N}) : \prod_{j : \alpha_j = 0} A_j \to \mathcal{X}_{\alpha},$$

$$\kappa^b_{\alpha,j}(z) := \begin{cases} z_j & \text{when } \alpha_j = 0, \\ b_j & \text{when } \alpha_j = 1, \end{cases} \quad j = 1, \ldots, N.$$

Let $M \subset T_{N,k}$. For $\alpha \in \mathcal{J}_{\leq N}$ and for $b \in \prod D_j$ let $M_{b,\alpha}^a$ denote a fiber

$$M_{b,\alpha}^a := \{ z \in \prod A_j : \kappa^b_{\alpha}(z) \in M \}.$$

Definition 1.9. Let $M \subset T_{N,k}$ be such that for all $\alpha \in \mathcal{I}_{k}^{N}$ and for all $a \in (\prod A_j) \setminus \Sigma_{\alpha}$ the set $(\prod D_j) \setminus M_{a,\alpha}$ is open. By $\mathcal{O}_{S}(T_{N,k} \setminus M)$ we will denote a space of functions
f ∈ \mathcal{O}_S(T_{N,k} \setminus M) such that for all \alpha ∈ I^N_k and for all b ∈ (\prod_{j:a_j=1} A_j), the function

\[(\prod_{j:a_j=0} A_j) \setminus (\Sigma_\alpha \cup M^k_{b,\alpha}) \ni z \mapsto f_{b,\alpha}^k =: f_{b,\alpha}(z)\]
is continuous.

Theorem 1.10 (Extension theorem for \((N,k)\)-crosses with pluripolar singularities). Let \(D_j\) be a Riemann domain of holomorphy over \(\mathbb{C}^{a_j}\), \(A_j ⊂ D_j\) be locally pluriregular, \(j = 1, \ldots, N\). For \(\alpha ∈ I^N_k\) let \(\Sigma_\alpha ⊂ \prod_{j:a_j=0} A_j\), be pluripolar. Let

\[
X_{N,k} := X_{N,k}((A_j, D_j)_{j=1}^N), \quad T_{N,k} := T_{N,k}((A_j, D_j)_{j=1}^N, (\Sigma_\alpha)_{\alpha ∈ I^N_k}).
\]

Let \(M\) be a relatively closed, pluripolar subset of \(T_{N,k}\) such that for all \(\alpha ∈ I^N_k\) and all \(a ∈ (\prod_{j:a_j=0} A_j) \setminus \Sigma_\alpha\) the fiber \(M_{a,\alpha}\) is pluripolar. Let

\[
\mathcal{F} := \begin{cases} \mathcal{O}_S(X_{N,k} \setminus M), & \text{if for any } \alpha ∈ I^N_k \text{ we have } \Sigma_\alpha = \emptyset, \\ \mathcal{O}_S(T_{N,k} \setminus M), & \text{otherwise} \end{cases}
\]

Then there exists a relatively closed, pluripolar set \(\hat{M} ⊂ \hat{X}_{N,k}\) and a generalized \((N,k)\)-cross \(\hat{T}_{N,k} := T_{N,k}((A_j, D_j)_{j=1}^N, (\Sigma'_\alpha)_{\alpha ∈ I^N_k}) \subset T_{N,k}\) with \(\Sigma_\alpha ⊂ \Sigma'_\alpha \subset \prod_{j:a_j=0} A_j\) pluripolar, \(\alpha ∈ I^N_k\), such that:

- \(\hat{M} ∩ (c(T_{N,k}) ∪ T'_{N,k}) ⊂ M\),
- for any \(f ∈ \mathcal{F}\) there exists a function \(\hat{f} ∈ \mathcal{O}(\hat{X}_{N,k} \setminus \hat{M})\) such that \(\hat{f} = f\) on \((c(T_{N,k}) ∪ T'_{N,k}) \setminus M\),
- \(\hat{M}\) is singular with respect to \(\{\hat{f} : f ∈ \mathcal{F}\}\).

Theorem 1.11. Let \(D_j\) be a Riemann domain of holomorphy over \(\mathbb{C}^{a_j}\), \(A_j ⊂ D_j\) be locally pluriregular, \(j = 1, \ldots, N\). For \(\alpha ∈ J^N_{≤ k}\) let \(\Sigma_\alpha\) be a pluripolar subset of \(\prod_{j:a_j=0} A_j\). Let

\[
X_{N,k} := X_{N,k}((A_j, D_j)_{j=1}^N), \quad T_{N,k} := T_{N,k}((A_j, D_j)_{j=1}^N, (\Sigma_\alpha)_{\alpha ∈ J^N_{≤ k}}),
\]

\[
Y_{N,k} := Y_{N,k}((A_j, D_j)_{j=1}^N, (\Sigma_\alpha)_{\alpha ∈ J^N_{≤ k}}),
\]

\[
W_{N,k} ∈ \{X_{N,k}, T_{N,k}, Y_{N,k}\}, \ M ⊂ c(W_{N,k}) \text{ and } \mathcal{F} ⊂ \{f : c(W_{N,k}) \setminus M → \mathbb{C}\} \text{ be such that:}
\]

\[(T1) \quad M \text{ is pluripolar},
\]

\[(T2) \quad \text{for any } \alpha ∈ J^N_{≤ k} \text{ and any } a ∈ (\prod_{j:a_j=0} A_j) \setminus \Sigma_\alpha \text{ the fiber } M_{a,\alpha} \text{ is pluripolar,}
\]

\[(T3) \quad \text{for any } \alpha ∈ J^N_{≤ k} \text{ and any } a ∈ (\prod_{j:a_j=0} A_j) \setminus \Sigma_\alpha \text{ there exists a closed, pluripolar set}
\]

\[
\hat{M}_{a,\alpha} ⊂ \prod_{j:a_j=1} D_j \text{ such that } \hat{M}_{a,\alpha} ∩ \prod_{j:a_j=1} A_j ⊂ M_{a,\alpha}.
\]

\[\tag{1}\]

(That is, for all \(a ∈ \hat{M}\) and \(U_a\)-open neighborhood of \(a\) there exists \(\hat{f} ∈ \{\hat{f} : f ∈ \mathcal{F}\}\) such that \(\hat{f}\) does not extend holomorphically on \(U_a\).)

\[\tag{2}\]

(Actually we can assume a bit less: \(M\) is such that for all \(j ∈ \{1, \ldots, N\}\) the set \(\{a_j ∈ A_j : M_{(\cdot, a_j, \cdot)} \text{ is not pluripolar}\}\) is pluripolar.

\[\tag{3}\]

(When \(k = N\) we assume that there exists \(\hat{M} ∈ D_1 \times \ldots \times D_N\) closed, pluripolar, such that \(\hat{M} ∩ c(W_{N,k}) ⊂ M\).)}
(T4) for any \(a \in c(W_{N,k}) \setminus M\) there exists an \(r > 0\) such that for all \(f \in F\) there exists an \(f_a \in O(P(a, r))\) with \(f_a = f\) on \(P(a, r) \cap (c(W_{N,k}) \setminus M)\).

(T5) for any \(f \in F\), any \(\alpha \in J^N_{\Sigma,k}\) and any \(a \in \bigcap_{j: \alpha_j = 0} A_j \setminus \Sigma_a\) there exists a function

\[
\tilde{f}_{a,\alpha} \in O(\prod_{j: \alpha_j = 1} D_j \setminus \tilde{M}_{a,\alpha}) \text{ such that } \tilde{f}_{a,\alpha} = f_{a,\alpha} \text{ on } \bigcap_{j: \alpha_j = 1} A_j \setminus M_{a,\alpha}.\tag{4}
\]

Then there exists a relatively closed, pluripolar set \(\tilde{M} \subset \tilde{X}_{N,k}\) such that:

- \(\tilde{M} \cap c(W_{N,k}) \subset M\),
- for any \(f \in F\) there exists \(\hat{f} \in O(\tilde{X}_{N,k} \setminus \tilde{M})\) such that \(\hat{f} = f\) on \(c(W_{N,k}) \setminus M\),
- \(\tilde{M}\) is singular with respect to \(\{\hat{f} : f \in F\}\),
- if for all \(\alpha \in J^N_{\Sigma,k}\) and all \(a \in \bigcap_{j: \alpha_j = 0} A_j \setminus \Sigma_a\) we have \(\tilde{M}_{a,\alpha} = \emptyset\), then \(\tilde{M} = \emptyset\),
- if for all \(\alpha \in J^N_{\Sigma,k}\) and all \(a \in \bigcap_{j: \alpha_j = 0} A_j \setminus \Sigma_a\) the set \(\tilde{M}_{a,\alpha}\) is thin in \(\bigcap_{j: \alpha_j = 1} D_j\), then \(\tilde{M}\) is analytic in \(\tilde{X}_{N,k}\).

Proposition 1.12. Let \(D_j, A_j\) and \(\Sigma_a\) be as in Theorem 1.11. Let

\[
\begin{align*}
X_{N,k} &:= X_{N,k}((A_j, D_j)_{j=1}^N), & T_{N,k} &:= T_{N,k}((A_j, D_j)_{j=1}^N, (\Sigma_a)_{\alpha \in J^N_{\Sigma,k}}), \\
Y_{N,k} &:= Y_{N,k}((A_j, D_j)_{j=1}^N, (\Sigma_a)_{\alpha \in J^N_{\Sigma,k}}),
\end{align*}
\]

\(W_{N,k} \subset \{X_{N,k}, T_{N,k}, Y_{N,k}\}\). Let \(M \subset W_{N,k}\) and \(F \subset O_S(W_{N,k} \setminus M)\) be such that:

- (P1) \(M \cap c(W_{N,k})\) is pluripolar,
- (P2) for any \(\alpha \in J^N_{\Sigma,k}\) and any \(a \in \bigcap_{j: \alpha_j = 0} A_j \setminus \Sigma_a\) the fiber \(M_{a,\alpha}\) is pluripolar and relatively closed in \(\bigcap_{j: \alpha_j = 1} D_j\),
- (P3) for any \(a \in c(W_{N,k}) \setminus M\) there exists an \(r > 0\) such that for all \(f \in F\) there exists a function \(f_a \in O(P(a, r))\) with \(f_a = f\) on \(P(a, r) \cap (c(W_{N,k}) \setminus M)\).

Then there exists a relatively closed, pluripolar set \(\tilde{M} \subset \tilde{X}_{N,k}\) such that:

- \(\tilde{M} \cap c(W_{N,k}) \subset M\),
- for any \(f \in F\) there exists \(\hat{f} \in O(\tilde{X}_{N,k} \setminus \tilde{M})\) such that \(\hat{f} = f\) on \(c(W_{N,k}) \setminus M\),
- \(\tilde{M}\) is singular with respect to \(\{\hat{f} : f \in F\}\),
- if \(M = \emptyset\), then \(\tilde{M} = \emptyset\),
- if for all \(\alpha \in J^N_{\Sigma,k}\) and all \(a \in \bigcap_{j: \alpha_j = 0} A_j \setminus \Sigma_a\) the fiber \(M_{a,\alpha}\) is thin in \(\bigcap_{j: \alpha_j = 1} D_j\), then \(\tilde{M}\) is analytic in \(\tilde{X}_{N,k}\).

2. **Prerequisites**

Theorem 2.1 (see [JarPfl 2007], Theorem 1.1). Let \(D_j\) be a Riemann domain of holomorphy over \(\mathbb{C}^n\), \(A_j \subset D_j\) be locally pluriregular and let \(\Sigma_j \subset A'_j \times A''_j\) be pluripolar, \(j = 1, \ldots, N\). Put

\[
X := X((A_j, D_j)_{j=1}^N), & T := T((A_j, D_j, \Sigma_j)_{j=1}^N).
\]

Let \(F \subset \{f : c(T) \setminus M \rightarrow \mathbb{C}\}\) and let \(M \subset T\) be such that:

- for any \(j \in \{1, \ldots, N\}\) an any \((a'_j, a''_j) \in (A'_j \times A''_j) \setminus \Sigma_j\) the fiber \(M(a'_j, a''_j)\) is pluripolar.

\[(4)\text{When } k = N \text{ we assume that there exists } \tilde{f} \in O(D_1 \times \ldots \times D_N \setminus \tilde{M}) \text{ such that } \tilde{f} = f \text{ on } c(W_{N,k}) \setminus M.\]
• for any \(j \in \{1, \ldots, N\} \) and any \((a'_j, a''_j) \in (A'_j \times A''_j) \setminus \Sigma_j \) there exists a closed, pluripolar set \(\tilde{M}_{a,j} \subset D_j \) such that \(\tilde{M}_{a,j} \cap A_j \subset M(a'_j, a''_j) \),
• for any \(a \in c(T) \setminus M \) there exists an \(r > 0 \) such that for all \(f \in \mathcal{F} \) there exists an \(f_a \in \mathcal{O}(P(a, r)) \) with \(f_a = f \) on \(P(a, r) \cap (c(T) \setminus M) \),
• for any \(f \in \mathcal{F} \), any \(j \in \{1, \ldots, N\} \), and any \((a'_j, a''_j) \in (A'_j \times A''_j) \setminus \Sigma_j \) there exists a function \(\tilde{f}_{a,j} \in \mathcal{O}(D_j \setminus \tilde{M}_{a,j}) \) such that \(\tilde{f}_{a,j} = f(a'_j, \cdot, a''_j) \) on \(A_j \setminus M_{a,j} \).

Then there exists a relatively closed, pluripolar set \(\tilde{M} \subset X \) such that:
• \(\tilde{M} \cap c(T) \subset M \),
• for any \(f \in \mathcal{F} \) there exists a function \(\hat{f} \in \mathcal{O}(X \setminus \tilde{M}) \) such that \(\hat{f} = f \) on \(c(T) \setminus M \),
• \(\tilde{M} \) is singular with respect to \(\{ \hat{f} : f \in \mathcal{F} \} \),
• if for all \(j \in \{1, \ldots, N\} \) and all \((a'_j, a''_j) \in (A'_j \times A''_j) \setminus \Sigma_j \) we have \(\tilde{M}_{a,j} = \emptyset \), then \(\tilde{M} = \emptyset \),
• if for all \(j \in \{1, \ldots, N\} \) and all \((a'_j, a''_j) \in (A'_j \times A''_j) \setminus \Sigma_j \) the set \(\tilde{M}_{a,j} \) is thin in \(D_j \), then \(\tilde{M} \) is analytic in \(X \).

Lemma 2.2 (JarPfl 2010, Lemma 4). Let \(D_j \) be a Riemann domain of holomorphy over \(\mathbb{C}^{n_j} \) and \(A_j \subset D_j \) be locally pluriregular, \(j = 1, \ldots, N \). Then for all \(z = (z_1, \ldots, z_N) \in \hat{X}_{N,k} \) we have:

\[
h_{\hat{X}_{N,k-1}, \hat{X}_{N,k}}(z) = \max \{0, \sum_{j=1}^{N} h_{A_j, D_j}(z_j) - k + 1\}.
\]

Theorem 2.3 (Cross theorem for \((N, k)\)-crosses, cf. JarPfl 2011, Theorem 7.2.7). Let \(D_j \) be a Riemann domain of holomorphy over \(\mathbb{C}^{n_j} \) and \(A_j \subset D_j \) be locally pluriregular, \(j = 1, \ldots, N \). For \(k \in \{1, \ldots, N\} \) let \(X_{N,k} := X_{N,k}((A_j, D_j)_{j=1}^{N}) \). Then for every \(f \in \mathcal{O}_S(X_{N,k}) \) there exists a unique function \(\hat{f} \in \mathcal{O}(\hat{X}_{N,k}) \) such that \(\hat{f} = f \) on \(X_{N,k} \) and \(\hat{f}(\hat{X}_{N,k}) \subset f(X_{N,k}) \).

Theorem 2.4 (Cross theorem for generalized \((N, k)\)-crosses). Let \(D_j \) be a Riemann domain over \(\mathbb{C}^{n_j} \), \(A_j \subset D_j \) be pluriregular, \(j = 1, \ldots, N \). For \(\alpha \in \mathcal{T}_k \) let \(\Sigma_\alpha \) be a subset of \(\prod_{j: \alpha_j = 0} A_j \). Let

\[
X_{N,k} := X_{N,k}((A_j, D_j)_{j=1}^{N}), \quad T_{N,k} := T_{N,k}((A_j, D_j)_{j=1}^{N}, (\Sigma_\alpha)_{\alpha \in \mathcal{T}_k}).
\]

Then for every \(f \in \mathcal{O}_S(T_{N,k}) \) there exists \(\hat{f} \in \mathcal{O}(\hat{X}_{N,k}) \) such that \(\hat{f} = f \) on \(T_{N,k} \) and \(\hat{f}(\hat{X}_{N,k}) \subset f(T_{N,k}) \).

3. Sketch of proof of Theorem 1.11

Lemma 3.1. Theorem 1.11 with \(W_{N,k} = X_{N,k} \) implies Theorem 1.11 with \(W_{N,k} \in \{T_{N,k}, Y_{N,k}\} \).

Sketch of proof of Theorem 1.11 with \(W_{N,k} = X_{N,k} \).

Step 1. Theorem 1.11 is true for any \(N \) when \(k = 1 \) (Theorem 2.1) and when \(k = N \) (in this case we assumed the thesis).

(5) \(P(a, r) \) denotes a polydisc in Riemann domain \(D_1 \times \ldots \times D_N \) centered at \(a \) with radius \(r \).
Step 2. In particular, theorem is true for \(N = 2, k = 1, 2 \). Assume we already have Theorem 1.11 for \((N-1, k) \), where \(k \in \{1, \ldots, N-1\} \) and for \((N, 1), \ldots, (N, k-1) \), where \(k \in \{2, \ldots, N-1\} \). We need to prove it for \((N, k) \).

Step 3. Fix \(s \in \{1, \ldots, N\} \) (to simplify the notation let \(s = N \)). Let
\[
Q_N := \{a_N \in A_N : M_{(-a_N)} \text{ is not pluripolar}\}.
\]
Then \(Q_N \) is pluripolar. Define
\[
X_{N-1,k}^{(s)} := X_{N-1,k}((A_j, D_j)_{j=1,j\neq s}^N), \quad s = 1, \ldots, N,
\]
in particular
\[
X_{N-1,k}^{(N)} := X_{N-1,k} := X_{N-1,k}((A_j, D_j)_{j=1}^{N-1}).
\]
Fix \(a_N \in A_N \setminus Q_N \) and define a family \(\{f(\cdot, a_N) : f \in \mathcal{F}\} \subset \{f : c(X_{N-1,k}) \to \mathbb{C}\} \).
Then from inductive assumption we get a relatively closed pluripolar set \(\widetilde{M}_{a_N} \subset X_{N-1,k} \) such that:

- \(\widetilde{M}_{a_N} \cap c(X_{N-1,k}) \subset M_{(-a_N)} \),
- for any \(f \in \mathcal{F} \) there exists \(\hat{f}_{a_N} \in \mathcal{O}(\mathcal{X}_{N-1,k} \setminus \widetilde{M}_{a_N}) \) such that \(\hat{f}_{a_N} = f(\cdot, a_N) \) on \(c(X_{N-1,k}) \setminus M_{(-a_N)} \),
- \(\widetilde{M}_{a_N} \) is singular with respect to \(\{\hat{f}_{a_N} : f \in \mathcal{F}\} \),
- if for all \(\alpha' \in \{0,1\}^{N-1} : |\alpha'| \leq k \) and all \(a' \in (\prod_{j:|\alpha_j|=0} A_j) \setminus \Sigma_{\alpha'} \), we have \(\widetilde{M}_{a',\alpha'} = \emptyset \),
- then \(\widetilde{M}_{a_N} = \emptyset \),
- if for all \(\alpha' \in \{0,1\}^{N-1} : |\alpha'| \leq k \) and all \(a' \in (\prod_{j:|\alpha_j|=0} A_j) \setminus \Sigma_{\alpha'} \), the set \(\widetilde{M}_{a',\alpha'} \) is thin in \(\prod_{j:|\alpha_j|=0} D_j \), then \(\widetilde{M}_{a_N} \) is analytic in \(X_{N-1,k} \).

Define a new cross
\[
Z_N := X(c(X_{N-1,k}), A_N; \mathcal{X}_{N-1,k}, D_N).
\]
Observe that \(Z_N \) with original \(M, (\Sigma_{\alpha})_{\alpha} \) and the family \(\mathcal{F} \) satisfies all the assumptions of Theorem 1.11 with \(N = 2, k = 1 \). Then there exists an \(\widehat{M}_N \subset Z_N \), relatively closed, pluripolar, such that:

- \(\widehat{M}_N \cap c(X_{N,k}) \subset M \),
- for any \(f \in \mathcal{F} \) there exists \(\hat{f}_N \in \mathcal{O}(Z_N \setminus \widehat{M}_N) \) such that \(\hat{f}_N = f \) on \(c(X_{N,k}) \setminus M \),
- \(\widehat{M}_N \) is singular with respect to \(\{\hat{f}_N : f \in \mathcal{F}\} \),
- if for all \(a' \in c(X_{N-1,k}) \setminus \Sigma_{(0,\ldots,0,1)} \) we have \(\widehat{M}_{a'} = \emptyset \) and for all \(a_N \in A_N \setminus Q_N \) we have \(\widehat{M}_{a_N} = \emptyset \), then \(\widehat{M}_N = \emptyset \),
- if for all \(a' \in c(X_{N-1,k}) \setminus \Sigma_{(0,\ldots,0,1)} \) the set \(\widehat{M}_{a'} \) is thin in \(D_N \) and for all \(a_N \in A_N \setminus Q_N \) the set \(\widehat{M}_{a_N} \) is thin in \(\mathcal{X}_{N-1,k} \), then \(\widehat{M}_N \) is analytic in \(Z_N \).

We repeat the reasoning above for all \(s = 1, \ldots, N-1 \), obtaining a family of functions \(\{\hat{f}_s\}_{s=1}^N \) such that for any \(s \in \{1, \ldots, N\} \) we have \(\hat{f}_s = f \) on \(c(X_{N,k}) \setminus M \). Define a new function
\[
F_f(z) := \begin{cases}
\hat{f}_1(z) & \text{for } z \in \mathcal{Z}_1 \setminus \widehat{M}_1 \\
\vdots \\
\hat{f}_N(z) & \text{for } z \in \mathcal{Z}_N \setminus \widehat{M}_N
\end{cases}
\]
Lemma 3.2. Function F_f is well defined and holomorphic on $\left(\bigcup_{s=1}^{N} Z_s \right) \setminus \left(\bigcup_{s=1}^{N} \tilde{M}_s \right)$.

Step 4. Define a 2-fold cross

$$Z := X(X_{N-1,k-1}, A_N; \tilde{X}_{N-1,k}, D_N) \subset \bigcup_{s=1}^{N} Z_s,$$

a pluripolar set

$$\tilde{M} := \left(\bigcup_{s=1}^{N} \tilde{M}_s \right) \cap (X_{N-1,k-1} \times A_N)$$

and a family

$$\tilde{F} := \{ \tilde{f} := F_f|_{(X_{N-1,k-1} \times A_N) \setminus \tilde{M}} : f \in F \}.$$

Then Z, \tilde{M} and \tilde{F} satisfy the assumptions of Theorem 1.11 with $N = 1$ and $k = 1$. Now from Theorem 1.11 there exists a relatively closed, pluripolar set $\tilde{M} \subset \tilde{Z} = \tilde{X}_{N,k}$ such that:

- $\tilde{M} \cap (X_{N-1,k-1} \times A_N) \subset \tilde{M}$, in particular, $\tilde{M} \cap c(X_{N,k}) \subset \tilde{M}$,
- for any $\tilde{f} \in \tilde{F}$ there exists $\tilde{f} \in O(\tilde{X}_{N,k} \setminus \tilde{M})$ such that $\tilde{f} = \tilde{f}$ on $(X_{N-1,k-1} \times A_N) \setminus \tilde{M}$, in particular $\tilde{f} = f$ on $c(X_{N,k}) \setminus \tilde{M}$,
- \tilde{M} is singular with respect to $\{ \tilde{f} : f \in F \}$,
- if for all $z' \in X_{N-1,k-1} \setminus P \tilde{M}' = \emptyset$ and for all $a_N \in A_N \setminus Q \tilde{M}_{a_N} = \emptyset$, then $\tilde{M} = \emptyset$,
- if for all $z' \in X_{N-1,k-1} \setminus P$ the set \tilde{M}' is thin in D_N and for all $a_N \in A_N \setminus Q$ the set \tilde{M}_{a_N} is thin in $\tilde{X}_{N-1,k}$, then \tilde{M} is analytic in \tilde{Z}.

Sketch of proof of Lemma 3.2. Fix s and p. We want to show that $\tilde{f}_s = \tilde{f}_p$ on $(Z_s \cap Z_p) \setminus (\tilde{M}_s \cup \tilde{M}_p)$. To simplify the notation we may assume that $s = N - 1$ and $p = N$.

Step 1. Every connected component of $Z_{N-1} \cap Z_N$ contains part of the center.
Step 2. One connected component of $Z_{N-1} \cap Z_N$ contains whole $Z_{N-1} \cap Z_N$.
Step 3. Every connected component of $Z_{N-1} \cap Z_N$ with $\tilde{M}_{N-1} \cup \tilde{M}_N$ deleted is a domain, thus it is a connected component of $(Z_{N-1} \cap Z_N) \setminus (\tilde{M}_{N-1} \cup \tilde{M}_N)$.
Step 4. One connected component of $(Z_{N-1} \cap Z_N) \setminus (\tilde{M}_{N-1} \cup \tilde{M}_N)$ contains whole set $(Z_{N-1} \cap Z_N) \setminus (\tilde{M}_{N-1} \cup \tilde{M}_N)$.
Step 5. $\tilde{f}_{N-1} = \tilde{f}_N$ on $(Z_{N-1} \cap Z_N) \setminus (\tilde{M}_{N-1} \cup \tilde{M}_N)$.

References

8