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In 1984 L. Lempert [4] published the proof of the equality of the Lempert function
and the Carathéodory distance on strictly linearly convex domains with analytic
boundaries [4], however the proof contained some gaps. Our goal is to repair the
fragments which were not correctly done during the conference Geometric Methods
in Complex Analysis II, Będlewo 2011.

Theorem 1 (Lempert Theorem). Let D ⊂ Cn be a strictly linearly convex domain
with an analytic boundary. Then

cD = kD = k̃D and γD = κD.

It is possible to describe all the k̃D- and κD-extremals.

Definition 2. Let D ⊂ Cn be a strictly linearly convex domain with an analytic
boundary. We call a holomorphic mapping f : D −→ D an E-mapping if
(1) f extends to a Cω function on D (denoted by the same letter f);
(2) f(∂D) ⊂ ∂D;
(3) there exists a positive Cω function ρ : ∂D −→ R such that the mapping

∂D 3 ζ 7−→ ζρ(ζ)ν(f(ζ)) ∈ Cn extends to a Cω function f̃ : D −→ Cn,
holomorphic in D, where ν(z) is the outward unit normal vector to ∂D at
z;

(4) setting ϕ(ζ) := ν(f(ζ))(z − f(ζ)), ζ ∈ ∂D, we have wind ϕ = 0 for all
z ∈ D.

Theorem 3. Let D be a strictly linearly convex domain with an analytic boundary.
Then for any different points z, w ∈ D (resp. z ∈ D, v ∈ (Cn)∗) there exists an
E-mapping f : D −→ D such that f(0) = z, f(ξ) = w for some ξ ∈ (0, 1) (resp.
f(0) = z, f ′(0) = λv for some λ > 0). Moreover, f is the unique k̃D-extremal
w.r.t. z, w (resp. the unique κD-extremal w.r.t. z, v).
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