LEMPERT THEOREM

TOMASZ WARSZAWSKI

In 1984 L. Lempert [4] published the proof of the equality of the Lempert function and the Carathéodory distance on strictly linearly convex domains with analytic boundaries [4], however the proof contained some gaps. Our goal is to repair the fragments which were not correctly done during the conference Geometric Methods in Complex Analysis II, Będlewo 2011.

Theorem 1 (Lempert Theorem). Let $D \subset \mathbb{C}^n$ be a strictly linearly convex domain with an analytic boundary. Then

$$c_D = k_D = k_D$$
 and $\gamma_D = \kappa_D$.

It is possible to describe all the \tilde{k}_D - and κ_D -extremals.

Definition 2. Let $D \subset \mathbb{C}^n$ be a strictly linearly convex domain with an analytic boundary. We call a holomorphic mapping $f : \mathbb{D} \longrightarrow D$ an E-mapping if

- (1) f extends to a \mathcal{C}^{ω} function on $\overline{\mathbb{D}}$ (denoted by the same letter f);
- (2) $f(\partial \mathbb{D}) \subset \partial D;$
- (3) there exists a positive \mathcal{C}^{ω} function $\rho : \partial \mathbb{D} \longrightarrow \mathbb{R}$ such that the mapping $\partial \mathbb{D} \ni \zeta \longmapsto \zeta \rho(\zeta) \overline{\nu(f(\zeta))} \in \mathbb{C}^n$ extends to a \mathcal{C}^{ω} function $\tilde{f} : \overline{\mathbb{D}} \longrightarrow \mathbb{C}^n$, holomorphic in \mathbb{D} , where $\nu(z)$ is the outward unit normal vector to ∂D at z;
- (4) setting $\varphi(\zeta) := \overline{\nu(f(\zeta))}(z f(\zeta)), \zeta \in \partial \mathbb{D}$, we have wind $\varphi = 0$ for all $z \in D$.

Theorem 3. Let D be a strictly linearly convex domain with an analytic boundary. Then for any different points $z, w \in D$ (resp. $z \in D, v \in (\mathbb{C}^n)_*$) there exists an E-mapping $f : \mathbb{D} \longrightarrow D$ such that $f(0) = z, f(\xi) = w$ for some $\xi \in (0,1)$ (resp. $f(0) = z, f'(0) = \lambda v$ for some $\lambda > 0$). Moreover, f is the unique \tilde{k}_D -extremal w.r.t. z, w (resp. the unique κ_D -extremal w.r.t. z, v).

References

- J. E. FORNÆSS, Embedding strictly pseudoconvex domains in convex domains, Am. J. Math. 98 (1976), 529–569.
- [2] G. M. GOLUZIN, Geometric Theory of Functions of a Complex Variable, Nauka, Moscow, 1966.
- [3] M. JARNICKI, P. PFLUG, Invariant Distances and Metrics in Complex Analysis, Walter de Gruyter, 1993.
- [4] L. LEMPERT, Intrinsic distances and holomorphic retracts, in Complex analysis and applications '81 (Varna, 1981), 341–364, Publ. House Bulgar. Acad. Sci., Sofia, 1984.
- [5] —, La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math. France, 109 (1981), 427–474.
- [6] W. RUDIN, Function Theory in the Unit Ball of \mathbb{C}^n , Springer-Verlag, Berlin, 2008.
- [7] E. TADMOR, Complex symmetric matrices with strongly stable iterates, Linear algebra and its applications 78 (1986), 65–77.