On the Boundary Regularity of Analytic Discs

Evgeni M. Chirka; Bernard Coupet; Alexendre B. Sukhov

In this talk we will study the boundary behavior of analytic discs near the zero set of a nonnegative plurisubharmonic function or a totally real submanifold of \mathbb{C}^n . We denote the cluster by

 $C(f;a) = \{p \in \overline{\Omega} \text{ such that } \exists (a_n)_n \subset \Delta \text{ with } a_n \to a \text{ and } f(a_n) \to p\}$

Our main result is the following.

Theorem 1. Let Ω be a complex manifold; ρ a plurisubharmonic function in Ω and $f : \Delta \to \Omega$ a holomorphic map of the unit disc $\Delta \subset \mathbb{C}$ into Ω such as $\rho of \ge 0$ and $\rho of(\zeta) \to 0$ as $\zeta \in \Delta$ tends to an open arc $\gamma \subset \partial \Delta$. Assume that for a certain point $a \in \gamma$ the cluster set C(f; a) contains a point $p \in \Omega$ such that ρ is strictly plurisubharmonic in a neighborhood of p. Then fextends to a Holder $\frac{1}{2}$ -continuous mapping in a neighborhood of a on $\Delta \cup \gamma$. If moreover $\rho \ge 0$ and the function ρ^{θ} is plurisubharmonic in a neiborhood of p for some $\theta \in [\frac{1}{2}; 1]$; then f is Holder $\frac{1}{2\theta}$ -continuous (Lipschitz; if $\theta = \frac{1}{2}$) in a neighborhood of a on $\Delta \cup \gamma$.

In conclusion we 'll indicate as an application of this theorem that the area of the analytic disc $f(\Delta)$ attached to a C^1 smooth totally real manifold is finite

Références

- Chirka; Regularity of boundaries of analytic sets; Mat. Sb. (N.S)117 (1982);291-336; translation in Math. USSR-Sb. 45 (1983); 291-335
- [2] L.Lempert;La metrique de kobayashi et la representation des domaines sur la boule; bull Soc Math France 109 (1981); 427-474
- [3] L. Lempert; A precise result on the boundary regularity of biholomorphic mappings; Math. Z. 193 (1986). 559-579