Plurisubharmonic subextensions as envelopes on disc functionals (based on the paper by F. Lárusson and E. Poletsky)

Let $W \subset X \subset \mathbb{C}^N$ be domains, and let $\varphi : W \to [-\infty, \infty)$ be upper semicontinuous. Definition 1.

- $\mathcal{A}_X := \mathcal{O}(\mathbb{D}, X) \cap \mathbb{C}(\overline{\mathbb{D}}, X)$, endowed with the topology of the supremum norm on $\overline{\mathbb{D}}$,
- $\mathcal{A}_X^W := \{ f \in \mathcal{A}_X : f(\mathbb{T}) \subset W \},\$
- $S_W \varphi(x) := \sup\{u(x) : u \in PSH(X), u|_W \le \varphi\}, x \in X,$
- for a family $\mathcal{B} \subset \mathcal{A}_X^W$:

$$E_{\mathcal{B}}\varphi(x) := \inf_{f \in \mathcal{B}, f(0) = x} \int_{\mathbb{T}} \varphi \circ f d\sigma, \ x \in X,$$

where σ denotes the normalized Lebesgue measure on \mathbb{T} .

Observation 2. $S_W \varphi \leq E_{\mathcal{A}^W_X} \varphi$ on X.

Remark 3. It is a classical result that $S_X \varphi = E_{\mathcal{A}_X} \varphi$ on X.

Definition 4. We say that discs $f_0, f_1 \in \mathcal{A}_X^W$ are centre-homotopic, if $f_0(0) = f_1(0)$ and there is a continuous mapping $F : [0,1] \to \mathcal{A}_X^W$ such that $F(0) = f_0, F(1) = f_1$ and $F(t)(0) = f_0(0)$ for each t.

Definition 5. A family $\beta = (\beta_{\tau} : U_{\tau} \to \mathcal{A}_X^W)_{\tau \in T}$ of continuous mappings is called a *W*-disc structure on *X*, if:

- $(U_{\tau})_{\tau \in T}$ is an open cover of X,
- $\beta_{\tau}(x)(0) = x$ for each $\tau \in T, x \in U_{\tau}$,
- $\beta_{\tau_1}(x)$ and $\beta_{\tau_2}(x)$ are centre-homotopic for each $x \in U_{\tau_1} \cap U_{\tau_2}, \tau_1, \tau_2 \in T$.

For a W-disc structure β on X we define $\mathcal{B}_{\beta} := \bigcup_{\tau \in T} \beta_{\tau}(U_{\tau})$ and $E_{\beta}\varphi := E_{\mathcal{B}_{\beta}}\varphi$.

We say that X is a *schlicht disc extension* of W if there exists a W-disc structure β on X with the following property:

there is $\tau \in T$ such that $U_{\tau} = W$ and $\beta_{\tau}(w)$ is the constant disc at w for every $w \in W$.

Theorem 6. Let $W \subset X \subset \mathbb{C}^N$ be domains such that X is a schlicht disc extension of W. If $\varphi: W \to [-\infty, \infty)$ is upper semicontinuous, then

$$S_W \varphi = E_{\mathcal{A}^W_V} \varphi.$$

Theorem 7. Let $W \subset X \subset \mathbb{C}^N$ be domains. Assume that there is a connected component \mathcal{B} of \mathcal{A}^W_X such that:

- \mathcal{B} covers X, *i.e.* $\bigcup_{f \in \mathcal{B}} f(0) = X$,
- every $f_0, f_1 \in \mathcal{B}$ satisfying $f_0(0) = f_1(0)$ are centre-homotopic.

If $\varphi: W \to [-\infty, \infty)$ is upper semicontinuous, then

$$S_W \varphi = E_{\mathcal{A}^W_{\mathcal{V}}} \varphi.$$

Lemma 8. Let $W \subset X \subset \mathbb{C}^N$ be domains, let $\varphi : W \to [-\infty, \infty)$ be upper semicontinuous, and let β be a W-disc structure on X. Then $E_{\beta}\varphi$ is upper semicontinuous on X and

$$E_{\mathcal{A}_{\mathbf{v}}^{W}}\varphi \leq E_{\mathcal{A}_{X}}E_{\beta}\varphi.$$