Seminar on Geometric Function Theory

0.1 Proper holomorphic self-maps of plane regions

The following theorems due to C. Mueller and W. Rudin will be proved.

Theorem 1. Suppose $3 \le p < \infty$, Ω is a region in \mathbb{C} , and $K_1, ..., K_p$ are the components of $\partial\Omega$. Then $PRH(\Omega) = Aut(\Omega)$, and $Aut(\Omega)$ is a finite group.

Theorem 2. For a rational function $f(z) = cz - \sum_{i=1}^{m-1} \frac{1}{z-a_i}$ where $m \ge 2$, cand $a_1, ..., a_n$ are real numbers, c > 1, $a_1 < ... < a_{m-1}$ we define some f-orbits: $K_0 = \{x : p_1 < x < p_m\} K_{n+1} = f^{-1}(K_n)$ for n = 0, 1, 2, ... and $K = \bigcap_{n=0}^{\infty} K_n$ where $p_1, ..., p_m$ are fixed point of f in \mathbb{C} $A_0 = \{a_1, ..., a_m\} A_{n+1} = f^{-1}(A_n)$ for n = 0, 1, 2, ... and $A = \bigcap_{n=1}^{\infty} A_n$. Then (i) K is a Cantor set. (ii) The backward f-orbit of any $x \in K_0$ has K as its set of limit points. (iii) K is the only nonempty compact subset of \mathbb{R} that is a complete f-orbit. (iv) $A \cup \{\infty\}$ is a minimal complete f-orbit. (v) $K \cup A$ is compact, and $K \cup A \cup \{\infty\}$ is a complete f-orbit. Conversely, if H is a compact subset of \mathbb{R} and $H \cup \{\infty\}$ is a complete f-orbit, then $H = K \cup A$.

(vi) If $z_0 \in \Pi$ then complete f-orbit generated by z_0 is a discrete set $E \subset \Pi$ which has $K \cup A \cup \{\infty\}$ as its set of limit points.

Theorem 3. There exist a region Ω , whose boundary consist of $\mathbb{R} \cup \{\infty\}$ plus countable set of Jordan curves and $f \in PRH(\Omega)$ with multiplicity m, where m is preassigned.