Complex geodesics in convex tube domains

Definition 1. We say that a domain $D \subset \mathbb{C}^n$ is a convex tube, if $D = \Omega + i\mathbb{R}^n$ for some convex domain $\Omega \subset \mathbb{R}^n$. We call Ω the *base* of D, and denote it by Re D. We say that D is bounded from the right side, if there is $c \in \mathbb{R}$ such that Re $D \subset (-\infty, c)^n$.

Theorem 2. Let $D \subset \mathbb{C}^n$ be a convex tube domain, bounded from the right side, and let $\varphi : \mathbb{D} \to D$ be a holomorphic map. Then φ is a complex geodesic for D iff there exists a mapping $h : \mathbb{C} \to \mathbb{C}^n$ of the form $\bar{a}\lambda^2 + b\lambda + a$ with some $a \in \mathbb{C}^n, b \in \mathbb{R}^n$, such that:

(i) Re $\left[\bar{\lambda}h(\lambda) \bullet (z - \varphi^*(\lambda))\right] < 0$ for all $z \in D$ and a.e. $\lambda \in \mathbb{T}$,

(*ii*) Re
$$\left[h(\lambda) \bullet \frac{\varphi(0) - \varphi(\lambda)}{\lambda}\right] < 0$$
 for every $\lambda \in \mathbb{D}_*$.

Moreover, if φ is a complex geodesic for D, then h may be chosen as

$$h(\lambda) := \left(\frac{\partial f}{\partial z_1}(\varphi(\lambda)), \dots, \frac{\partial f}{\partial z_n}(\varphi(\lambda))\right), \ \lambda \in \mathbb{D},$$

where f is a left inverse for φ (h is then of the required form $\bar{a}\lambda^2 + b\lambda + a$, $a \in \mathbb{C}^n$, $b \in \mathbb{R}^n$).

Lemma 3. Let $D \subset \mathbb{C}^n$ be a convex tube, bounded from the right side, let $\varphi : \mathbb{D} \to D$ be a holomorphic map with the boundary measure μ^1 , and let $h(\lambda) = \bar{a}\lambda^2 + b\lambda + a$, $\lambda \in \mathbb{D}$, for some $a \in \mathbb{C}^n$, $b \in \mathbb{R}^n$, with $h \neq 0$. Then

(m) the measure
$$\bar{\lambda}h(\lambda) \bullet (\operatorname{Re} z \, d\mathcal{L}^{\mathbb{T}}(\lambda) - d\mu(\lambda))$$
 is negative for every $z \in D$

iff the following two conditions holds:

- (i) Re $\left[\bar{\lambda}h(\lambda) \bullet (z \varphi^*(\lambda))\right] < 0$ for all $z \in D$ and a.e. $\lambda \in \mathbb{T}$,
- (ii) Re $\left[h(\lambda) \bullet \frac{\varphi(0) \varphi(\lambda)}{\lambda}\right] < 0$ for every $\lambda \in \mathbb{D}_*$.

Theorem 4. Let $D \subset \mathbb{C}^n$ be a convex tube, bounded from the right side, and let $\varphi : \mathbb{D} \to D$ be a holomorphic map with the boundary measure μ . Then φ is a complex geodesic for D iff there exists a mapping $h : \mathbb{C} \to \mathbb{C}^n$ of the form $\bar{a}\lambda^2 + b\lambda + a$ with $a \in \mathbb{C}^n$, $b \in \mathbb{R}^n$, $h \neq 0$, such that

the measure
$$\overline{\lambda}h(\lambda) \bullet (\operatorname{Re} z \, d\mathcal{L}^{\mathbb{T}}(\lambda) - d\mu(\lambda))$$
 is negative for every $z \in D$.

$$\operatorname{Re}\varphi(\lambda)=\frac{1}{2\pi}\int_{\mathbb{T}}\frac{1-|\lambda|^2}{|\zeta-\lambda|^2}d\mu(\zeta),\;\lambda\in\mathbb{D}.$$

¹That is, μ is the only *n*-tuple of real, finite, Borel measures on \mathbb{T} s.t.