ESTIMATES OF INVARIANT FUNCTIONS ON CONVEX AND C-CONVEX DOMAINS

TOMASZ WARSZAWSKI

The following propositions due to N. Nikolov are proved $(d_D, c_D, k_D, b_D, k_D$ are respectively the distance to ∂D , the Carathéodory, Kobayashi and Bergman distances and the Lempert function of D).

Proposition 1. Let $D \subsetneq \mathbb{C}^n$ be a convex domain. Then

$$\widetilde{k}_D(z,w) \le \begin{cases} \frac{|z-w|}{d_D(z) - d_D(w)} \log \frac{d_D(z)}{d_D(w)}, & z, w \in D, \ d_D(z) \neq d_D(w), \\ \frac{|z-w|}{d_D(z)}, & z, w \in D, \ d_D(z) = d_D(w). \end{cases}$$

In particular, if D is bounded, then for any compact set $K \subset D$ there is $c_K > 0$ such that

$$b_D(z,w) \leq -c_K \log d_D(w) + c_K, \quad z \in K, \ w \in D.$$

Proposition 2. Let $D \subsetneq \mathbb{C}^n$ be a \mathbb{C} -convex domain. Then

$$c_D(z,w) \ge \frac{1}{4} \log \frac{d_D(z)}{4d_D(w)}, \quad z, w \in D.$$

In particular, if D is bounded then for any compact set $K \subset D$ there is $c_K > 0$ such that

$$b_D(z, w) \ge -\frac{1}{4} \log d_D(w) - c_K, \quad z \in K, \ w \in D.$$

Proposition 3. Let $D \subset \mathbb{C}^n$ be a bounded domain and let s_D be k_D or b_D .

(a) If D is locally \mathbb{C} -convexifiable then there exists c > 0 such that for any compact set $K \subset D$ there is $c_K > 0$ satisfying

$$s_D(z,w) \ge -c \log d_D(w) - c_K, \quad z \in K, \ w \in D.$$

(b) If D is locally \mathbb{C} -convexifiable and $\mathcal{C}^{1+\varepsilon}$ -smooth then there exists c > 0 such that for any compact set $K \subset D$ there is $c_K > 0$ satisfying

$$s_D(z,w) \leq -c \log d_D(w) + c_K, \quad z \in K, \ w \in D.$$

(c) If D is locally convexifiable then for any compact set $K \subset D$ there is $c_K > 0$ such that

$$s_D(z,w) \le -c_K \log d_D(w) + c_K, \quad z \in K, \ w \in D.$$

Proposition 4. Let p be a $\mathcal{C}^{1+\varepsilon}$ -smooth boundary point of a domain $D \subset \mathbb{C}$ and let s_D be c_D , k_D or $b_D/\sqrt{2}$. Then

(a) For any sufficiently small neighborhood U of p there exist a neighborhood V_U of p and a constant $c_U > 0$ such that

$$s_D(z,w) \ge -\frac{1}{2}\log d_D(w) - c_U, \quad z \in D \setminus U, \ w \in D \cap V_U.$$

(b) For any compact set $K \subset D$ there exist a neighborhood V_K of p and a constant $c_K > 0$ such that

$$s_D(z, w) \le -\frac{1}{2} \log d_D(w) + c_K, \quad z \in K, \ w \in D \cap V_K.$$

References

[1] N. NIKOLOV, Estimates of invariant distances on "convex" domains, arXiv:1210.7223.