Arkadiusz Lewandowski

We shall define a new type of cross-like objects and prove for them the following extension results:

Theorem 0.0.1. Let D_{j} be a Riemann domain of holomorphy over $\mathbb{C}^{n_{j}}$ and let $A_{j} \subset D_{j}$ be locally pluriregular, $j=1, \ldots, N$. Let $\mathbf{Q}:=\mathbb{Q}\left(\alpha_{j}^{i}\right)\left(\left(A_{j}, D_{j}\right)_{j=1}^{N}\right)$ be an \mathscr{A}-cross. Assume that an N-fold cross $\mathbb{X}_{N, 1}\left(\left(A_{j}, D_{j}\right)_{j=1}^{N}\right)$ is contained in \mathbf{Q}. Then there exist an $m_{0} \in\{1, \ldots, N\}$, a domain of holomorphy $G \subset D_{1} \times \ldots \times D_{m_{0}-1} \times D_{m_{0}+1} \times \ldots \times D_{N}$, a locally pluriregular subset $B \subset G$, and a 2-fold classical cross $\mathbf{X}=\mathbb{X}\left(A_{m_{0}}, B ; D_{m_{0}}, G\right)$ containing $\tau^{-1}(\mathbf{Q})$, where τ is a mapping which sends a point $\left(z_{m_{0}}, z_{1}, \ldots, z_{m_{0}-1}, z_{m_{0}+1}, \ldots, z_{N}\right) \in D_{m_{0}} \times D_{1} \times \ldots \times D_{m_{0}-1} \times D_{m_{0}+1} \times \ldots \times D_{N}$ to the point $\left(z_{1}, \ldots, z_{N}\right) \in D_{1} \times \ldots \times D_{N}$, such that for every function $f \in \mathcal{F}:=O_{s}(\mathbf{Q})$ (separately holomorphic) there exists a unique function $\widehat{f} \in O(\widehat{\mathbf{X}})$ (here $\widehat{\mathbf{X}}$ is the envelope of holomorphy of $\mathbf{X})$ with $\widehat{f}=f \circ \tau$ on $\tau^{-1}(\mathbf{Q})$, i.e. $\widehat{\mathbf{Q}}:=\tau(\widehat{\mathbf{X}})$ is the envelope of holomorphy of \mathbf{Q}.

Theorem 0.0.2. Let D_{j} be a Riemann domain of holomorphy over $\mathbb{C}^{n_{j}}$ and $A_{j} \subset D_{j}$ be locally pluriregular, compact, and holomorphically convex, $j=1, \ldots$, . Put $\mathbf{Q}:=\mathbb{Q}\left(\alpha_{j}^{i}\right)\left(\left(A_{j}, D_{j}\right)_{j=1}^{N}\right)$. Assume that $\mathbb{X}_{N, 1}\left(\left(A_{j}, D_{j}\right)_{j=1}^{N}\right) \subset \mathbf{Q}$. Denote by $\widehat{\mathbf{Q}}$ the envelope of holomorphy of \mathbf{Q} (cf. Theorem 0.0.1). Define $M:=\mathbf{Q} \cap G$, where G is an analytic subset of an open neighborhood U of \mathbf{Q} contained in $\widehat{\mathbf{Q}}$ with codim $G \geq 1$ and let $\mathcal{F}:=O_{s}(\mathbf{Q} \backslash M)$. Then there exist an analytic set $\widehat{M} \subset \widehat{\mathbf{Q}}$ and an open neighborhood $U_{0} \subset U$ of \mathbf{Q} such that:

- $\widehat{M} \cap U_{0} \subset G$,
- for any $f \in \mathcal{F}$ there exists an $\widehat{f} \in O(\widehat{\mathbf{Q}} \backslash \widehat{M})$ such that $\widehat{f}=f$ on $\mathbf{Q} \backslash M$,
- \widehat{M} is singular with respect to the family $\{\widehat{f}: f \in \mathcal{F}\}$,
- $\widehat{f}(\widehat{\mathbf{Q}} \backslash \widehat{M}) \subset f(\mathbf{Q} \backslash M)$ for any $f \in \mathcal{F}$.

In particular, the extension result holds for the (N, k)-crosses.

