A-crosses

Arkadiusz Lewandowski

We shall define a new type of cross-like objects and prove for them the following extension results:

THEOREM 0.0.1. Let D_j be a Riemann domain of holomorphy over \mathbb{C}^{n_j} and let $A_j \subset D_j$ be locally pluriregular, j = 1, ..., N. Let $\mathbf{Q} := \mathbb{Q}(\alpha_j^i)((A_j, D_j)_{j=1}^N)$ be an \mathscr{A} -cross. Assume that an N-fold cross $\mathbb{X}_{N,1}((A_j, D_j)_{j=1}^N)$ is contained in \mathbf{Q} . Then there exist an $m_0 \in \{1, ..., N\}$, a domain of holomorphy $G \subset D_1 \times ... \times D_{m_0-1} \times D_{m_0+1} \times ... \times D_N$, a locally pluriregular subset $B \subset G$, and a 2-fold classical cross $\mathbf{X} = \mathbb{X}(A_{m_0}, B; D_{m_0}, G)$ containing $\tau^{-1}(\mathbf{Q})$, where τ is a mapping which sends a point $(z_{m_0}, z_1, ..., z_{m_0-1}, z_{m_0+1}, ..., z_N) \in D_{m_0} \times D_1 \times ... \times D_{m_0-1} \times D_{m_0+1} \times ... \times D_N$ to the point $(z_1, ..., z_N) \in D_1 \times ... \times D_N$, such that for every function $f \in \mathcal{F} := O_s(\mathbf{Q})$ (separately holomorphic) there exists a unique function $\hat{f} \in O(\hat{\mathbf{X}})$ (here $\hat{\mathbf{X}}$ is the envelope of holomorphy of \mathbf{X}) with $\hat{f} = f \circ \tau$ on $\tau^{-1}(\mathbf{Q})$, i.e. $\hat{\mathbf{Q}} := \tau(\hat{\mathbf{X}})$ is the envelope of holomorphy of \mathbf{Q} .

THEOREM 0.0.2. Let D_j be a Riemann domain of holomorphy over \mathbb{C}^{n_j} and $A_j \subset D_j$ be locally pluriregular, compact, and holomorphically convex, j = 1, ..., N. Put $\mathbf{Q} := \mathbb{Q}(\alpha_j^i)((A_j, D_j)_{j=1}^N)$. Assume that $\mathbb{X}_{N,1}((A_j, D_j)_{j=1}^N) \subset \mathbf{Q}$. Denote by $\widehat{\mathbf{Q}}$ the envelope of holomorphy of \mathbf{Q} (cf. Theorem 0.0.1). Define $M := \mathbf{Q} \cap G$, where G is an analytic subset of an open neighborhood U of \mathbf{Q} contained in $\widehat{\mathbf{Q}}$ with codim $G \ge 1$ and let $\mathcal{F} := O_s(\mathbf{Q} \setminus M)$. Then there exist an analytic set $\widehat{M} \subset \widehat{\mathbf{Q}}$ and an open neighborhood $U_0 \subset U$ of \mathbf{Q} such that:

- $\widehat{M} \cap U_0 \subset G$,
- for any $f \in \mathcal{F}$ there exists an $\widehat{f} \in O(\widehat{\mathbf{Q}} \setminus \widehat{M})$ such that $\widehat{f} = f$ on $\mathbf{Q} \setminus M$,
- \widehat{M} is singular with respect to the family $\{\widehat{f} : f \in \mathcal{F}\},\$
- $\widehat{f}(\widehat{\mathbf{Q}} \setminus \widehat{M}) \subset f(\mathbf{Q} \setminus M)$ for any $f \in \mathcal{F}$.

In particular, the extension result holds for the (*N*, *k*)*-crosses.*