THE CARATHÉODORY AND KOBAYASHI-ROYDEN METRICS BY WAY OF DUAL EXTREMAL PROBLEMS

HALSEY ROYDEN, PIT-MANN WONG AND STEVEN G. KRANTZ

Let $\left(X,\| \|_{X}\right)$ be a complex normed space and let $P: X \rightarrow \mathbb{R}_{+}$be the Minkowski subnorm on $\left(X,\| \|_{X}\right)$, i.e.

- $P(x+y) \leq P(x)+P(y), x, y \in X$,
- $P(t x)=t P(x), t \geq 0, x \in X$,
- $c^{-1}\|x\|_{X} \leq P(x) \leq c\|x\|_{X}, x \in X$, where $c=c\left(P,\| \|_{X}\right)>0$ is some constant.
Let

$$
X^{*}:=\{u: X \rightarrow \mathbb{C}: u \text { is } \mathbb{C} \text {-linear and continuous }\}
$$

denote the dual of X endowed with the standard norm

$$
\|u\|_{X^{*}}:=\sup \left\{\frac{|u(x)|}{\|x\|_{X}}: x \in X \backslash\{0\}\right\}, \quad u \in X^{*}
$$

Put

$$
P^{*}(u):=\sup \left\{\frac{\operatorname{Re} u(x)}{P(x)}: x \in X \backslash\{0\}\right\}, \quad u \in X^{*}
$$

One can easily prove that $P^{*}: X^{*} \rightarrow \mathbb{R}_{+}$is a Minkowski subnorm on $\left(X^{*},\| \|_{X^{*}}\right)$ with the same constant c as that for P.

- Indeed, subadditivity and positive homogeneity are clear. To see the third condition observe that

$$
\frac{\operatorname{Re} u(x)}{P(x)} \leq c \frac{|u(x)|}{\|x\|_{X}}, \quad x \neq 0
$$

i.e. right inequality is trivial. To see the left inequality fix $u \in X^{*}$ and observe that for any $x \in X$ with $u(x) \neq 0$ there is $\tilde{x} \in X$ with $\|x\|_{X}=\|\tilde{x}\|_{X}$ and

$$
0<u(\tilde{x})=|u(\tilde{x})|=\operatorname{Re} u(\tilde{x})
$$

Hence

$$
\frac{|u(x)|}{c\|x\|_{X}}=\frac{\operatorname{Re} u(\tilde{x})}{c\|\tilde{x}\|_{X}} \leq \frac{\operatorname{Re} u(\tilde{x})}{P(\tilde{x})} \leq P^{*}(u) .
$$

Since x was arbitrary (if $u(x)=0$ then inequality is obvious), we get

$$
c^{-1}\|u\|_{X^{*}} \leq P^{*}(u)
$$

Let Y be a complex linear subspace of X and let $x_{0} \in X \backslash \bar{Y}$. Define

$$
m=m\left(x_{0}+Y\right):=\inf _{y \in Y} P\left(x_{0}+y\right)
$$

and

$$
M=M\left(x_{0}+Y\right):=\inf \left\{P^{*}(u): u \in Y^{0}, \operatorname{Re} u\left(x_{0}\right)=1\right\}
$$

where $Y^{0}:=\left\{u \in X^{*}:\left.u\right|_{Y}=0\right\}$ is the annihilator of Y. Clearly $m>0$, since $x_{0} \notin \bar{Y}$.

To solve the linear extremal problem is to find a point $x \in x_{0}+Y$ such that $P(x)=m$. To solve the dual extremal problem is to find a point $u \in Y^{0}$ with $\operatorname{Re} u\left(x_{0}\right)=1$ such that $P^{*}(u)=M$.
Proposition 1 (principle of duality). With notation as above, we have
(i) $m M=1$;
(ii) there exists a point $u \in Y^{0}$ with $\operatorname{Re} u\left(x_{0}\right)=1$ and $P^{*}(u)=M$;
(iii) if $x \in x_{0}+Y$ and $u \in Y^{0}$ are such that $\operatorname{Re} u(x)=P(x) P^{*}(u)=1$, then $P(x)=m$ and $P^{*}(u)=M$.
0.1. A linear extremal problem. Let Ω be a bounded, convex domain in \mathbb{C}^{n} containing the origin. Let

$$
p(z):=\inf \left\{\lambda>0: \lambda^{-1} z \in \Omega\right\}, \quad z \in \mathbb{C}^{n}
$$

be the Minkowski function of Ω. Note that $\Omega=\left\{z \in \mathbb{C}^{n}: p(z)<1\right\}$ and that p is Minkowski subnorm on \mathbb{C}^{n}.

- Indeed, recall that $p_{\Omega_{1}} \geq p_{\Omega_{2}}$ for $\Omega_{1} \subset \Omega_{2}$. Form the assumption there are $r, R>0$ such that $B(0, r) \subset \Omega \subset B(0, R)$, i.e.

$$
\frac{\|z\|}{R}=p_{B(0, R)}(z) \leq p(z) \leq p_{B(0, r)}(z)=\frac{\|z\|}{r}, \quad z \in \mathbb{C}^{n} .
$$

It suffices to take $c:=\max \left\{r^{-1}, R\right\}$.
For $\nu \in \mathbb{N}$ and $\zeta_{\alpha} \in \mathbb{D}, d_{\alpha} \in \mathbb{N}, 1 \leq \alpha \leq \nu$, let

$$
\mathcal{D}(\zeta)=\mathcal{D}_{\left(\zeta_{1}, \ldots, \zeta_{\nu} ; d_{1}, \ldots, d_{\nu}\right)}(\zeta):=\prod_{\alpha=1}^{\nu}\left(\zeta-\zeta_{\alpha}\right)^{d_{\alpha}}, \quad \zeta \in \mathbb{C}
$$

be the divisor on \mathbb{D} with total degree $\operatorname{deg} \mathcal{D}:=\sum_{\alpha=1}^{\nu} d_{\alpha}$ and let

$$
\mathfrak{D}:=\left\{a_{\alpha, \beta_{\alpha}} \in \mathbb{C}^{n}: 1 \leq \alpha \leq \nu, 0 \leq \beta_{\alpha} \leq d_{\alpha}-1\right\}
$$

For $k \in \mathbb{Z}_{+}$put $X:=\mathcal{O}\left(\mathbb{D}, \mathbb{C}^{n}\right) \cap \mathcal{C}^{k}\left(\overline{\mathbb{D}}, \mathbb{C}^{n}\right)$ and

$$
\|f\|_{X}:=\sum_{j=0}^{k} \max _{\zeta \in \mathbb{D}}\left\|f^{(j)}(\zeta)\right\|, \quad f \in X
$$

Then $\left(X,\| \|_{X}\right)$ is a Banach space. Define

$$
P(f):=\max _{\zeta \in \overline{\mathbb{D}}} p(f(\zeta)), \quad f \in X
$$

Finally, we define

$$
\begin{align*}
L_{k}=L_{k}(\mathcal{D}, \mathfrak{D}) & := \tag{1.1}\\
& \left\{f \in X: f^{\left(\beta_{\alpha}\right)}\left(\zeta_{\alpha}\right)=a_{\alpha, \beta_{\alpha}}, 1 \leq \alpha \leq \nu, 0 \leq \beta_{\alpha} \leq d_{\alpha}-1\right\}
\end{align*}
$$

Note that L_{k} is an affine subspace of X. Indeed, if we fix $f_{0} \in L_{k}$ then

$$
L_{k}=f_{0}+Y
$$

where $Y:=\{\mathcal{D} f: f \in X\}$ is a closed linear subspace of X.
Proposition 2. Let Ω be a bounded, convex domain in \mathbb{C}^{n} containing the origin and let $k \in \mathbb{Z}_{+}$.
(a) Let $\zeta_{1}, \zeta_{2} \in \mathbb{D}, a, b \in \Omega, a \neq b, \mathcal{D}(\zeta)=\left(\zeta-\zeta_{1}\right)\left(\zeta-\zeta_{2}\right), \mathfrak{D}=\{a, b\}, f \in L_{k}(\mathcal{D}, \mathfrak{D})$ with $f(\mathbb{D}) \subset \Omega$. Then the following are equivalent
(i) f is extremal for $K_{\Omega}(a, b)$;
(ii) $P(f)=1$ and f is extremal for $m\left(L_{k}\right)$.
(b) Let $a \in \Omega, v \in \mathbb{C}^{n} \backslash\{0\}, \mathcal{D}(\zeta)=\zeta^{2}, \mathfrak{D}=\{a, v\}, f \in L_{k}(\mathcal{D}, \mathfrak{D})$ with $f(\mathbb{D}) \subset \Omega$. Then the following are equivalent
(i) f is extremal for $\kappa_{\Omega}(a ; v)$;
(ii) $P(f)=1$ and f is extremal for $m\left(L_{k}\right)$.
0.2 . The dual extremal problem. Let Ω be a bounded, convex domain in \mathbb{C}^{n} containing the origin with Minkowski function p. Let

$$
p^{*}(w):=\sup _{z \in \mathbb{C}^{n} \backslash\{0\}} \frac{\operatorname{Re}(z \bullet w)}{p(z)}, \quad w \in \Omega,
$$

where $z \bullet w:=\sum_{j=1}^{n} z_{j} w_{j}$ for any $z=\left(z_{1}, \ldots, z_{n}\right), w=\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{C}^{n}$. Let $\mathbb{T}:=\partial \mathbb{D}$.

For $k \in \mathbb{Z}_{+}$put $X:=\mathcal{C}^{k}\left(\mathbb{T}, \mathbb{C}^{n}\right)$ and

$$
\|f\|_{X}:=\sum_{j=0}^{k} \max _{\zeta \in \mathbb{T}}\left\|f^{(j)}(\zeta)\right\|, \quad f \in X
$$

Then $\left(X,\| \|_{X}\right)$ is a Banach space. Define

$$
P(f):=\max _{\zeta \in \mathbb{T}} p(f(\zeta)), \quad f \in X
$$

Let P^{*} be the Minkowski subnorm associated to P defined on the dual space X^{*}. Denote by τ the normalized Lebesgue measure on \mathbb{T}, i.e.

$$
\int_{\mathbb{T}} v(\zeta) d \tau(\zeta):=\frac{1}{2 \pi} \int_{0}^{2 \pi} v\left(e^{i \theta}\right) d \theta, \quad v \in L^{1}(\mathbb{T}, \mathbb{C} ; \tau)
$$

For $v=\left(v_{1}, \ldots, v_{n}\right) \in L^{1}\left(\mathbb{T}, \mathbb{C}^{n} ; \tau\right)$ let $v \tau:=\left(v_{1} \tau, \ldots, v_{n} \tau\right)$.
Theorem 3. Let Ω be a bounded, convex domain in \mathbb{C}^{n} with \mathcal{C}^{k} boundary, $k \in \mathbb{Z}_{+}$, containing the origin and let $f \in L_{k}(\mathcal{D}, \mathfrak{D})$, where \mathfrak{D} contains at least two different vectors. Then the following conditions are equivalent
(i) f is extremal for $m=m\left(L_{k}\right)$;
(ii) there is a map $\tilde{h} \in H^{1}\left(\mathbb{D}, \mathbb{C}^{n}\right), h \not \equiv 0$, such that

$$
\operatorname{Re} \int_{\mathbb{T}} f(\zeta) \bullet h(\zeta) d \tau(\zeta)=P(f) P^{*}(h \tau)
$$

where $h(\zeta):=\zeta(\mathcal{D}(\zeta))^{-1} \tilde{h}^{*}(\zeta)$;
(iii) there is a map $\hat{h} \in H^{1}\left(\mathbb{D}, \mathbb{C}^{n}\right), h \not \equiv 0$, such that

$$
p(f(\zeta))=m, \quad \operatorname{Re}(f(\zeta) \bullet h(\zeta))=p(f(\zeta)) p^{*}(h(\zeta)) \quad \text { for a.a. } \zeta \in \mathbb{T},
$$

where $h(\zeta):=\zeta(\mathcal{D}(\zeta))^{-1} \tilde{h}^{*}(\zeta)$.
Furthermore,

- if Ω is strictly convex (i.e. if $z, w, \frac{1}{2}(z+w) \in \partial \Omega$, then $z=w$) then f as in (i) is unique;
- if Ω has \mathcal{C}^{1} boundary, then h as in (ii) or (iii) is unique.

Corollary 4. Let Ω be a bounded, convex domain in \mathbb{C}^{n} containing the origin and let $f \in L_{k}(\mathcal{D}, \mathfrak{D}) \cap L_{k}\left(\mathcal{D}^{\prime}, \mathfrak{D}^{\prime}\right)$, where \mathcal{D} and \mathcal{D}^{\prime} are divisors on \mathbb{D} such that $d:=\operatorname{deg} \mathcal{D} \leq \operatorname{deg} \mathcal{D}^{\prime}=: d^{\prime}$. If f is extremal for $m=m\left(L_{k}(\mathcal{D}, \mathfrak{D})\right)$, then it is also extremal for $m^{\prime}=m^{\prime}\left(L_{k}\left(\mathcal{D}^{\prime}, \mathfrak{D}^{\prime}\right)\right)$.

Corollary 5. Let Ω be a bounded, convex domain in \mathbb{C}^{n} containing the origin and let $k \in \mathbb{Z}_{+}$. Let $\zeta_{1}, \zeta_{2} \in \mathbb{D}, a, b \in \Omega, a \neq b, \mathcal{D}(\zeta)=\left(\zeta-\zeta_{1}\right)\left(\zeta-\zeta_{2}\right), \mathfrak{D}=\{a, b\}, f \in$ $L_{k}(\mathcal{D}, \mathfrak{D})$ with $f(\mathbb{D}) \subset \Omega$. Assume that f is extremal for $K_{\Omega}(a, b)$. Then f is also extremal for $m=m\left(L_{k}(\mathcal{D}, \mathfrak{D})\right)$ with $P(f)=1$ and there is a map $\tilde{h} \in H^{1}\left(\mathbb{D}, \mathbb{C}^{n}\right)$, $h \not \equiv 0$, such that for a.a. $\zeta \in \mathbb{T}$ the hyperplane

$$
\left\{z \in \mathbb{C}^{n}: \operatorname{Re}((z-f(\zeta)) \bullet h(\zeta))=0\right\}
$$

is a supporting hyperplane for Ω at $f(\zeta)$, where $h(\zeta):=\zeta(\mathcal{D}(\zeta))^{-1} \tilde{h}^{*}(\zeta)$. Furthermore,

- if Ω is strictly convex then f is unique;
- if Ω has \mathcal{C}^{1} boundary, then h is unique.

A consequence of the last corollary is the next result.
Corollary 6. Let Ω be a bounded, convex domain in \mathbb{C}^{n} and let $a, b \in \Omega, a \neq b$. If $f \in \mathcal{O}(\mathbb{D}, \Omega)$ is extremal for $K_{\Omega}(a, b)$ which extends \mathcal{C}^{k} onto \mathbb{T} then f is also extremal for $K_{\Omega}\left(a^{\prime}, b^{\prime}\right)$ and $\kappa_{\Omega}\left(a^{\prime} ; v\right)$ for any $a^{\prime}, b^{\prime} \in f(\mathbb{D})$ and $v \in \mathbb{C}^{n}$.

Corollary 7. Let Ω be a bounded strongly convex domain with \mathcal{C}^{2} boundary. If f is an extremal mapping for the Kobayashi distance, then $f \in \mathcal{C}^{1 / 2}(\overline{\mathbb{D}})$.

References

[1] M. Jarnicki, P. Pflug, Invariant Distances and Metrics in Complex Analysis, Walter de Gruyter, 1993.
[2] L. Lempert, La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math. France 109 (1981), 427-474.

