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Let (X, ‖ ‖X) be a complex normed space and let P : X → R+ be the Minkowski
subnorm on (X, ‖ ‖X), i.e.

• P (x+ y) ≤ P (x) + P (y), x, y ∈ X,
• P (tx) = tP (x), t ≥ 0, x ∈ X,
• c−1‖x‖X ≤ P (x) ≤ c‖x‖X , x ∈ X, where c = c(P, ‖ ‖X) > 0 is some

constant.

Let
X∗ := {u : X → C : u is C-linear and continuous}

denote the dual of X endowed with the standard norm

‖u‖X∗ := sup

{
|u(x)|
‖x‖X

: x ∈ X \ {0}
}
, u ∈ X∗.

Put

P ∗(u) := sup

{
Reu(x)

P (x)
: x ∈ X \ {0}

}
, u ∈ X∗.

One can easily prove that P ∗ : X∗ → R+ is a Minkowski subnorm on (X∗, ‖ ‖X∗)
with the same constant c as that for P .

• Indeed, subadditivity and positive homogeneity are clear. To see the third
condition observe that

Reu(x)

P (x)
≤ c |u(x)|
‖x‖X

, x 6= 0,

i.e. right inequality is trivial. To see the left inequality fix u ∈ X∗ and
observe that for any x ∈ X with u(x) 6= 0 there is x̃ ∈ X with ‖x‖X = ‖x̃‖X
and

0 < u(x̃) = |u(x̃)| = Reu(x̃).

Hence
|u(x)|
c‖x‖X

=
Reu(x̃)

c‖x̃‖X
≤ Reu(x̃)

P (x̃)
≤ P ∗(u).

Since x was arbitrary (if u(x) = 0 then inequality is obvious), we get

c−1‖u‖X∗ ≤ P ∗(u).

Let Y be a complex linear subspace of X and let x0 ∈ X \ Y . Define

m = m(x0 + Y ) := inf
y∈Y

P (x0 + y)

and
M = M(x0 + Y ) := inf{P ∗(u) : u ∈ Y 0, Reu(x0) = 1},

where Y 0 := {u ∈ X∗ : u|Y = 0} is the annihilator of Y . Clearly m > 0, since
x0 /∈ Y .

To solve the linear extremal problem is to find a point x ∈ x0 + Y such that
P (x) = m. To solve the dual extremal problem is to find a point u ∈ Y 0 with
Reu(x0) = 1 such that P ∗(u) = M .

Proposition 1 (principle of duality). With notation as above, we have
1
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(i) mM = 1;
(ii) there exists a point u ∈ Y 0 with Reu(x0) = 1 and P ∗(u) = M ;

(iii) if x ∈ x0 + Y and u ∈ Y 0 are such that Reu(x) = P (x)P ∗(u) = 1, then
P (x) = m and P ∗(u) = M .

0.1. A linear extremal problem. Let Ω be a bounded, convex domain in Cn
containing the origin. Let

p(z) := inf{λ > 0 : λ−1z ∈ Ω}, z ∈ Cn,

be the Minkowski function of Ω. Note that Ω = {z ∈ Cn : p(z) < 1} and that p is
Minkowski subnorm on Cn.

• Indeed, recall that pΩ1
≥ pΩ2

for Ω1 ⊂ Ω2. Form the assumption there are
r,R > 0 such that B(0, r) ⊂ Ω ⊂ B(0, R), i.e.

‖z‖
R

= pB(0,R)(z) ≤ p(z) ≤ pB(0,r)(z) =
‖z‖
r
, z ∈ Cn.

It suffices to take c := max{r−1, R}.
For ν ∈ N and ζα ∈ D, dα ∈ N, 1 ≤ α ≤ ν, let

D(ζ) = D(ζ1,...,ζν ;d1,...,dν)(ζ) :=

ν∏
α=1

(ζ − ζα)dα , ζ ∈ C,

be the divisor on D with total degree degD :=
∑ν
α=1 dα and let

D := {aα,βα ∈ Cn : 1 ≤ α ≤ ν, 0 ≤ βα ≤ dα − 1}.

For k ∈ Z+ put X := O(D,Cn) ∩ Ck(D,Cn) and

‖f‖X :=

k∑
j=0

max
ζ∈D
‖f (j)(ζ)‖, f ∈ X.

Then (X, ‖ ‖X) is a Banach space. Define

P (f) := max
ζ∈D

p(f(ζ)), f ∈ X.

Finally, we define

(1.1) Lk = Lk(D,D) :=

{f ∈ X : f (βα)(ζα) = aα,βα , 1 ≤ α ≤ ν, 0 ≤ βα ≤ dα − 1}.

Note that Lk is an affine subspace of X. Indeed, if we fix f0 ∈ Lk then

Lk = f0 + Y,

where Y := {Df : f ∈ X} is a closed linear subspace of X.

Proposition 2. Let Ω be a bounded, convex domain in Cn containing the origin
and let k ∈ Z+.

(a) Let ζ1, ζ2 ∈ D, a, b ∈ Ω, a 6= b, D(ζ) = (ζ−ζ1)(ζ−ζ2), D = {a, b}, f ∈ Lk(D,D)
with f(D) ⊂ Ω. Then the following are equivalent

(i) f is extremal for KΩ(a, b);
(ii) P (f) = 1 and f is extremal for m(Lk).

(b) Let a ∈ Ω, v ∈ Cn \ {0}, D(ζ) = ζ2, D = {a, v}, f ∈ Lk(D,D) with f(D) ⊂ Ω.
Then the following are equivalent

(i) f is extremal for κΩ(a; v);
(ii) P (f) = 1 and f is extremal for m(Lk).
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0.2. The dual extremal problem. Let Ω be a bounded, convex domain in Cn
containing the origin with Minkowski function p. Let

p∗(w) := sup
z∈Cn\{0}

Re(z • w)

p(z)
, w ∈ Ω,

where z • w :=
∑n
j=1 zjwj for any z = (z1, . . . , zn), w = (w1, . . . , wn) ∈ Cn. Let

T := ∂D.
For k ∈ Z+ put X := Ck(T,Cn) and

‖f‖X :=

k∑
j=0

max
ζ∈T
‖f (j)(ζ)‖, f ∈ X.

Then (X, ‖ ‖X) is a Banach space. Define

P (f) := max
ζ∈T

p(f(ζ)), f ∈ X.

Let P ∗ be the Minkowski subnorm associated to P defined on the dual space
X∗. Denote by τ the normalized Lebesgue measure on T, i.e.∫

T
v(ζ) dτ(ζ) :=

1

2π

∫ 2π

0

v(eiθ) dθ, v ∈ L1(T,C; τ).

For v = (v1, . . . , vn) ∈ L1(T,Cn; τ) let vτ := (v1τ, . . . , vnτ).

Theorem 3. Let Ω be a bounded, convex domain in Cn with Ck boundary, k ∈ Z+,
containing the origin and let f ∈ Lk(D,D), where D contains at least two different
vectors. Then the following conditions are equivalent

(i) f is extremal for m = m(Lk);

(ii) there is a map h̃ ∈ H1(D,Cn), h 6≡ 0, such that

Re

∫
T
f(ζ) • h(ζ) dτ(ζ) = P (f)P ∗(hτ),

where h(ζ) := ζ(D(ζ))−1h̃∗(ζ);

(iii) there is a map h̃ ∈ H1(D,Cn), h 6≡ 0, such that

p(f(ζ)) = m, Re(f(ζ) • h(ζ)) = p(f(ζ))p∗(h(ζ)) for a.a. ζ ∈ T,

where h(ζ) := ζ(D(ζ))−1h̃∗(ζ).

Furthermore,

• if Ω is strictly convex (i.e. if z, w, 1
2 (z+w) ∈ ∂Ω, then z = w) then f as in

(i) is unique;
• if Ω has C1 boundary, then h as in (ii) or (iii) is unique.

Corollary 4. Let Ω be a bounded, convex domain in Cn containing the origin
and let f ∈ Lk(D,D) ∩ Lk(D′,D′), where D and D′ are divisors on D such that
d := degD ≤ degD′ =: d′. If f is extremal for m = m(Lk(D,D)), then it is also
extremal for m′ = m′(Lk(D′,D′)).

Corollary 5. Let Ω be a bounded, convex domain in Cn containing the origin and
let k ∈ Z+. Let ζ1, ζ2 ∈ D, a, b ∈ Ω, a 6= b, D(ζ) = (ζ− ζ1)(ζ− ζ2), D = {a, b}, f ∈
Lk(D,D) with f(D) ⊂ Ω. Assume that f is extremal for KΩ(a, b). Then f is also

extremal for m = m(Lk(D,D)) with P (f) = 1 and there is a map h̃ ∈ H1(D,Cn),
h 6≡ 0, such that for a.a. ζ ∈ T the hyperplane

{z ∈ Cn : Re((z − f(ζ)) • h(ζ)) = 0}
is a supporting hyperplane for Ω at f(ζ), where h(ζ) := ζ(D(ζ))−1h̃∗(ζ). Further-
more,

• if Ω is strictly convex then f is unique;
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• if Ω has C1 boundary, then h is unique.

A consequence of the last corollary is the next result.

Corollary 6. Let Ω be a bounded, convex domain in Cn and let a, b ∈ Ω, a 6= b.
If f ∈ O(D,Ω) is extremal for KΩ(a, b) which extends Ck onto T then f is also
extremal for KΩ(a′, b′) and κΩ(a′; v) for any a′, b′ ∈ f(D) and v ∈ Cn.

Corollary 7. Let Ω be a bounded strongly convex domain with C2 boundary. If f
is an extremal mapping for the Kobayashi distance, then f ∈ C1/2(D).
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