PLURISUBHARMONIC FUNCTIONS AS ENVELOPES OF THE RESTRICTIONS OF DISC FUNCTIONALS

Abstract: We consider the set of analytic disc in an open set $X \subset \mathbb{C}^n$ which derivative at the origin is zero and we prove that the envelope of Poisson's disc functional on this set is plurisub-harmonic.

INTRODUCTION

Denote by \mathbb{D} the unit disk in \mathbb{C} . We recall the definition of the Kobayashi-Royden pseudometric K_X of a domain $X \subset \mathbb{C}^n$.

$$K_X(x,v) = inf\{\alpha > 0, \text{ there is } f \in \mathbb{O}(\mathbb{D},X), f(0) = x, \alpha f'(0) = v\}$$

where $x \in X$, $v \in \mathbb{C}^n$. And we set $\Omega = \{(x, v) \in X \times \mathbb{C}^n, K_X(x, v) < 1\}$. For $\varphi : X \longrightarrow \mathbb{R}$ upper semicontinuous, $(x, v) \in \Omega$, we define :

$$F_{\varphi}(x,v) = \inf\left\{\frac{1}{2\pi}\int_{0}^{2\pi}\varphi of(e^{i\theta})d\theta, f \in \mathbb{O}(\overline{\mathbb{D}},X), f(0) = x, f'(0) = v\right\}.$$

Our goal is to check whether F_{φ} is plurisablarmonic in Ω . For any $x \in X$ we set:

$$EH_{\varphi}(x) = \inf\left\{\frac{1}{2\pi}\int_{0}^{2\pi}\varphi of(e^{i\theta})d\theta, f \in \mathbb{O}(\overline{\mathbb{D}}, X), f(0) = x\right\}.$$

Poletsky has proved that EH_{φ} is plurisubharmonic and $EH_{\varphi} = \sup\{u \in PSH(X), u \leq \varphi\}$. Notice that, $EH_{\varphi}(x) \leq F_{\varphi}(x, v)$, for any $v \in \mathbb{C}^n$, such that, $(x, v) \in \Omega$.

Theorem 1 The function $F_{\varphi}(.,0)$ is plurisubharmonic. Where :

$$F_{\varphi}(x,0) = \inf\left\{\frac{1}{2\pi}\int_{0}^{2\pi}\varphi of(e^{i\theta})d\theta, f \in \mathbb{O}(\overline{\mathbb{D}},X), f(0) = x, f'(0) = 0\right\}.$$

And for any integer k>0 we have :

$$F_{\varphi}(x,0) = \inf\left\{\frac{1}{2\pi} \int_{0}^{2\pi} \varphi of(e^{i\theta}) d\theta, f \in \mathbb{O}(\overline{\mathbb{D}}, X), f(0) = x, f^{(1)}(0) = \dots = f^{(k)}(0) = 0\right\} = EH_{\varphi}(x).$$

Before to prove this theorem let's state and prove the following lemma.

Lemma 1 : Let $\varphi \in C(X)$, then, $F_{\varphi} \in USC(\Omega)$ and for any, $(x, v) \in \Omega$, we have :

$$F_{\varphi}(x,v) = \inf \left\{ \frac{1}{2\pi} \int_{0}^{2\pi} EH_{\varphi} of(e^{i\theta}) d\theta, f \in \mathbb{O}(\overline{\mathbb{D}}, X), f(0) = x, f'(0) = v \right\}.$$

Proof 1 :

 $F_{\varphi} \in USC(\Omega).$

Let $(x_0, v_0) \in \Omega, c \in \mathbb{R}$ and assume that $F_{\varphi}(x_0, v_0) < c$. We need to show that there exists an open neighbourhood V, of (x_0, v_0) in Ω such that $F_{\varphi}(x, v) < c$ for all $(x, v) \in V$. By definition of enveloppe, there exists $f_0 \in \mathbb{O}(\overline{\mathbb{D}}, X)$, $f_0(0) = x_0$, $f'_0(0) = v_0$, such that:

$$F_{\varphi}(x_0, v_0) \le \int_{\mathbb{T}} \varphi(f_0(t)) d\sigma(t) < c.$$

We choose a compact neighbourhood U of (x_0, v_0) in Ω , such that : $\{f_0(z) + (x - x_0) + z(v - v_0), z \in \mathbb{D}\} \subset X$ for all $(x, v) \in U$ and define:

$$f_{x,v}(z) = f_0(z) + x - x_0 + z(v - v_0).$$

Recall that $\varphi \in C(X)$ and F is continuous on U where:

$$F(x,v) = \int_{\mathbb{T}} \varphi(f_0(t) + x - x_0 + t(v - v_0)) d\sigma(t).$$

Since $F(x_0, v_0) < c$, it follows that there exists a neighbourhood V of (x_0, v_0) contained in U, such that for any $(x, v) \in V$, we have: $F_{\varphi}(x, v) < c$. Hence $F_{\varphi} \in USC(\Omega)$. We prove the equality.

Let $(x,v) \in \Omega$, as $EH_{\varphi} \leq \varphi$ then we have :

$$\inf\left\{\frac{1}{2\pi}\int_{0}^{2\pi}EH_{\varphi}of(e^{i\theta})d\theta, f\in\mathbb{O}(\overline{\mathbb{D}},X), f(0)=x, f^{'}(0)=v\right\}\leq\\\inf\left\{\frac{1}{2\pi}\int_{0}^{2\pi}\varphi of(e^{i\theta})d\theta, f\in\mathbb{O}(\overline{\mathbb{D}},X), f(0)=x, f^{'}(0)=v\right\}=F_{\varphi}(x,v)$$

In order to show the other inequality we have to prove that: $F_{\varphi}(x,v) \leq \frac{1}{2\pi} \int_{0}^{2\pi} EH_{\varphi}oh(e^{i\theta})d\theta$ for any $h \in \mathbb{O}(\overline{\mathbb{D}}, X)$ with h(0) = x, h'(0) = v. We will get, this, if we reach to prove that for any $P \in C(X)$ with $EH_{\varphi} \leq P$ we have : $F_{\varphi}(x,v) \leq \frac{1}{2\pi} \int_{0}^{2\pi} Poh(e^{i\theta})d\theta$ for any $h \in \mathbb{O}(\overline{\mathbb{D}}, X)$ with h(0) = x, h'(0) = v.

Let $\epsilon > 0$, $(x, v) \in \Omega$, $h \in \mathbb{O}(\overline{\mathbb{D}}, X)$ with h(0) = x, h'(0) = v and for any $P \in C(X)$ with $EH_{\varphi} \leq P$. We construct $g \in \mathbb{O}(\overline{\mathbb{D}}, X)$, g(0) = x, g'(0) = v such that:

$$\frac{1}{2\pi} \int_0^{2\pi} \varphi og(e^{i\theta}) d\theta \le \frac{1}{2\pi} \int_0^{2\pi} Poh(e^{i\theta}) d\theta + \epsilon.$$

To simplify the work, for any $f \in \mathbb{O}(\overline{\mathbb{D}}, X)$ we denote by $H_{\varphi}(f)$ the average of φ on the boundary of the analytic disc f. In other word $H_{\varphi}(f) = \frac{1}{2\pi} \int_{0}^{2\pi} \varphi oh(e^{i\theta}) d\theta$.

Let $(x,v) \in \Omega$, $\epsilon > 0$ and $h \in \mathbb{O}(\overline{\mathbb{D}}, X)$ with h(0) = x, h'(0) = v. For every $w_0 \in \mathbb{T}$, Poletsky's theorem ensures that there exists $r_0 > 1$ and $f_0 \in \mathbb{O}(D_{r_0}, X)$, $f_0(0) = h(w_0)$ such that:

$$H_{\varphi}(f_0) \le P(h(w_0)) + \epsilon$$

Since $\varphi \in C(X)$, $P \in C(X)$, there exists an open arc, $I_0 \ni w_0$ such that:

$$f_0(D_{r_0}) + h(w) - h(w_0) \subset X, w \in I_0.$$

and

$$\int_{\mathbb{T}} \varphi(f_0(t) + h(w) - h(w_0)) d\sigma(t) \le P(h(w)) + \epsilon, w \in I_0.$$

We define:

$$F_0: D_{r_0} \times I_0 \longrightarrow X, \ F_0(z, w) = f_0(z) + h(w) - h(w_0)$$

Then $F_0 \in C^{\infty}(D_{r_0} \times I_0, X), F_0(., w) \in \mathbb{O}(D_{r_0}, X), F_0(0, w) = h(w)$ and

$$H_{\varphi}(F_0(.,w)) \le P(h(w)) + \epsilon, w \in I_0.$$

A simple compactness argument shows that there exists a cover of \mathbb{T} by open arcs $\{I_j\}_{j=1}^N$, $r_j > 1$ and $F_j \in C^{\infty}(D_{r_j} \times I_j, X)$ with $F_j(., w) \in \mathbb{O}(D_{r_j}, X)$, $F_j(0, w) = h(w)$), $F_j(D_{r_j} \times I_j)$ is relatively compact in X, and

$$H_{\varphi}(F_j(.,w)) \le P(h(w)) + \epsilon, w \in I_j.$$

We set $r=\min r_j$, let K be a compact subset of X containing all the images, $F_j(D_r \times I_j) \cup h(\overline{\mathbb{D}})$, and choose

$$C > max_K(|\varphi| + |P|).$$

There exists disjoint closed arcs $J_j \subset I_j$ for $j \in \{1, ..., N\}$ such that

$$\sigma(\mathbb{T}\setminus \bigcup_j J_j) < \epsilon/C$$

Now we choose disjoint open arcs K_j such that $J_j \subset K_j \subset I_j$, and a function $\rho \in C^{\infty}(\mathbb{T}, [0, 1])$ satisfying $\rho(w) = 1$ if $w \in \bigcup_{j=1}^N J_j$ and $\rho(w) = 0$ if $w \in \mathbb{T} \setminus \bigcup_j K_j$, and finally we define

$$F(z,w) = \begin{cases} F_j(\rho(w)z,w), & z \in D_r, w \in K_j, j = 1, ..., N \\ h(w), & z \in D_r, w \in \mathbb{T} \setminus \bigcup_j K_j. \end{cases}$$

The choice of ρ ensures that $F \in C^{\infty}(D_r \times \mathbb{T}, X)$ and $F(., w) \in \mathbb{O}(D_r, X), F(0, w) = h(w)$ for all $w \in \mathbb{T}$. Hence

$$\begin{split} \int_{\mathbb{T}} H_{\varphi}(F(.,w)) d\sigma(w) &= \int_{\mathbb{T}\times\mathbb{T}} \varphi(F(z,w)) d\sigma(z) d\sigma(w) \\ &\leq \sum_{j=1}^{N} \int_{J_{j}} \left(\int_{\mathbb{T}} \varphi(F_{j}(z,w)) d\sigma(z) \right) d\sigma(w) + C\sigma(\mathbb{T}\setminus\bigcup_{j} J_{j}) \\ &\leq \sum_{j=1}^{N} \int_{J_{j}} H_{\varphi}(F_{j}(.,w)) d\sigma(w) + \epsilon \leq \sum_{j=1}^{N} \int_{J_{j}} P(h(w)) d\sigma(w) + \epsilon + \epsilon \\ &\leq \int_{\mathbb{T}} P(h(w)) d\sigma(t) + 2\epsilon + C\sigma(\mathbb{T}\setminus\bigcup_{j} J_{j}) \leq \int_{\mathbb{T}} P(h(w)) d\sigma(w) + 3\epsilon. \end{split}$$

Observe that:

$$F(z,w) = h(w) + \sum_{k=-\infty}^{+\infty} \left(\frac{1}{2\pi} \int_0^{2\pi} (F(z,e^{i\theta}) - h(e^{i\theta}))e^{-ik}d\theta \right) w^k.$$

Since the map :

$$\mathbb{R} \ni \theta \mapsto F(z, e^{i\theta}) - h(e^{i\theta}) \in \mathbb{C}^n,$$

is infinitely differentiable with period 2π , the Fourier series converges uniformly on \mathbb{T} for any $z \in D_{r_0}$. Where $1 < r_0 < r$.

Now we introduce the *j*-th partial sums of the series :

$$G_{j}(z,w) = h(w) + \sum_{k=-j}^{j} \left(\frac{1}{2\pi} \int_{0}^{2\pi} (F(z,e^{i\theta}) - h(e^{i\theta}))e^{-ik\theta} d\theta \right) w^{k}.$$

Since $G_j \longrightarrow F$ uniformly on $D_{r_0} \times \mathbb{T}$ as $j \longrightarrow +\infty$ there exists j_0 such that

 $G_j(D_{r_0} \times \mathbb{T}) \subset X, \ j \ge j_0.$

and

$$\int_{\mathbb{T}} H_{\varphi}(G_j(.,w)) d\sigma(w) \le \int_{\mathbb{T}} H_{\varphi}(F(.,w)) d\sigma(w) + \epsilon.$$

Notice that: $G_j \in \mathbb{O}(D_r \times \mathbb{C}^*, \mathbb{C}^n).$ $w \mapsto G_j(z, w)$ has a pole at 0 of order $\leq j$ for every $z \in D_r.$ Since $F(0, e^{i\theta}) = h(e^{i\theta})$ for all θ , the function $z \mapsto G_j(z, w) - h(w)$ has a zero at the origin for all w.

 $We \ can \ write$

$$G_j(z,w) = h(w) + zw^{-j}Q_j(z,w), \text{ where } Q_j \in \mathbb{O}(D_r \times \mathbb{C}, \mathbb{C}^n).$$

For every $k \geq j$ we get

$$G_j(zw^k, w) = h(w) + zw^{k-j}Q_j(zw^k, w) \in \mathbb{O}(\mathbb{D} \times \mathbb{D}, \mathbb{C}^n).$$

Since $G_j(z,w) \in X$ for all $(z,w) \in \mathbb{D} \times \mathbb{T}$ and $j \geq j_0$, we can choose $\eta_j \in]0,1[$ such that

 $G_j(z,w) \in X, (z,w) \in \mathbb{D} \times (\mathbb{D} \setminus D_{\eta_j}).$

We even have for every $k \ge j$, that:

$$G_j(zw^k, w) \in X, \ (z, w) \in \mathbb{D} \times (\mathbb{D} \setminus D_{\eta_j})$$

Since $G_j(0, w) = h(w) \in X$ for all $w \in \overline{\mathbb{D}}$ there exists δ_j , such that

$$G_j(zw^j, w) \in X, \ (z, w) \in D_{\delta_j} \times \mathbb{D}$$

If we take $k_j > j$ such that $zw^{k_j} \in D_{\delta_j}$ for $(z, w) \in \mathbb{D} \times D_{\eta_j}$. We have

 $G_j(zw^{k_j}, w) \in X, \ (z, w) \in \mathbb{D} \times D_{\eta_j}.$

Recall that $j > j_0$ sufficiently large, we have

$$G_{j}(\overline{\mathbb{D}} \times \mathbb{T}) \subset X,$$
$$\int_{\mathbb{T}} H_{\varphi}(G_{j}(.,w)) d\sigma(w) \leq \int_{\mathbb{T}} H_{\varphi}(F(.,w)) d\sigma(w) + \epsilon.$$

Take $k_j > j + 1$ and set:

$$G(z,w) = G_j(zw^{k_j},w) = h(w) + zw^{k_j - j}Q_j(zw^{k_j},w) \in \mathbb{O}(\overline{\mathbb{D}} \times \overline{\mathbb{D}},X).$$

We have

$$\begin{split} \int_{\mathbb{T}} H_{\varphi}(G(.,w)) d\sigma(w) &= \frac{1}{2\pi^2} \int_0^{2\pi} \int_0^{2\pi} \varphi(G_j(e^{i(\alpha+k_j\theta)}, e^{i\theta})) d\alpha d\theta \\ &= \frac{1}{2\pi^2} \int_0^{2\pi} \int_0^{2\pi} \varphi(G_j(e^{i\alpha}, e^{i\theta})) d\alpha d\theta = \int_{\mathbb{T}} H_{\varphi}(G_j(.,w)) d\sigma(w) \\ &\leq \int_{\mathbb{T}} H_{\varphi}(F(.,w)) d\sigma(w) + \epsilon. \end{split}$$

As φoG is continuous on $\mathbb{T} \times \mathbb{T}$. We set

$$\varphi oG(z_0, w_0) = \varphi oG_j(z_0 w_0^{k_j}, w_0) = \min\{\varphi oG_j(z w^{k_j}, w), (z, w) \in \mathbb{T} \times \mathbb{T}\},\$$

and we take

$$g(w) = G_j(w^{k_j}e^{i\alpha_0}, w).$$

Notice that $g \in \mathbb{O}(\overline{\mathbb{D}}, X), g(0) = h(0), g'(0) = h'(0)$ and

$$H_{\varphi}(g) = \int_{0}^{2\pi} \varphi(G_{j}(e^{i\alpha_{0}}e^{ik_{j}\theta}, e^{i\theta}))d\theta \leq \frac{1}{2\pi} \int_{0}^{2\pi} \int_{0}^{2\pi} \varphi(G_{j}(e^{i\alpha}e^{ik_{j}\theta}, e^{i\theta}))d\alpha d\theta$$
$$= \int_{\mathbb{T}} H_{\varphi}(G_{j}(., w))d\sigma(w) \leq \int_{\mathbb{T}} H_{\varphi}(F(., w))d\sigma(w) + \epsilon \leq \int_{\mathbb{T}} P(h(w))d\sigma(w) + 4\epsilon.$$

So $F_{\varphi}(x,v) \leq \int_{\mathbb{T}} P(h(w)) d\sigma(w) + 4\epsilon$ for any $\epsilon > 0$ hence $F_{\varphi}(x,v) \leq \int_{\mathbb{T}} P(h(w)) d\sigma(w)$. We have this for any continuous function P bigger than EH_{φ} by monotonic convergence theorem we get $F_{\varphi}(x,v) \leq \frac{1}{2\pi} \int_{0}^{2\pi} EH_{\varphi} oh(e^{i\theta}) d\theta$. As h is arbitrary so we have:

$$F_{\varphi}(x,v) \leq \inf \left\{ \frac{1}{2\pi} \int_{0}^{2\pi} EH_{\varphi} of(e^{i\theta}) d\theta, f \in \mathbb{O}(\overline{\mathbb{D}}, X), f(0) = x, f'(0) = v \right\}.$$

Proof of theorem1.

Proof 2 For $x \in X$ if we consider the constant disc f = x, Lemma 1, gives, $F_{\varphi}(x,0) \leq EH_{\varphi}(x)$, hence $F_{\varphi}(x,0) = EH_{\varphi}(x)$. So $F_{\varphi}(.,0) \in PSH(X)$ and it coincides with the largest plurisubhamonic function less than φ .

Let k > 0, $x \in X$, $h \in \mathbb{O}(\overline{\mathbb{D}}, X)$ with h(0) = x, $h^{(1)}(0) = \ldots = h^{(k)}(0) = 0$ if we repeat the proof of Lemma 1, we get,

$$\inf\left\{\frac{1}{2\pi}\int_{0}^{2\pi}\varphi of(e^{i\theta})d\theta, f\in\mathbb{O}(\overline{\mathbb{D}},X), f(0)=x, f^{(1)}(0)=\dots=f^{(k)}(0)=0\right\}\leq\frac{1}{2\pi}\int_{0}^{2\pi}EH_{\varphi}oh(e^{i\theta})d\theta$$

On considering the constant disc we get

$$\inf\left\{\frac{1}{2\pi}\int_{0}^{2\pi}\varphi of(e^{i\theta})d\theta, f\in\mathbb{O}(\overline{\mathbb{D}},X), f(0)=x, f^{(1)}(0)=\dots=f^{(k)}(0)=0\right\}=EH_{\varphi}(x)=F_{\varphi}(x,0)$$