
PLURISUBHARMONIC FUNCTIONS
AS ENVELOPES OF THE RESTRICTIONS OF DISC FUNCTIONALS

Abstract: We consider the set of analytic disc in an open set X ⊂ Cn which derivative at the
origin is zero and we prove that the envelope of Poisson’s disc functional on this set is plurisub-
harmonic.

INTRODUCTION

Denote by D the unit disk in C. We recall the definition of the Kobayashi-Royden pseudo-
metric KX of a domain X ⊂ Cn.

KX(x, v) = inf{α > 0, there is f ∈ O(D, X), f(0) = x, αf
′
(0) = v}

where x ∈ X, v ∈ Cn. And we set Ω = {(x, v) ∈ X×Cn,KX(x, v) < 1}. For ϕ : X −→ R upper
semicontinuous, (x, v) ∈ Ω, we define :

Fϕ(x, v) = inf
{

1

2π

∫ 2π

0
ϕof(eiθ)dθ, f ∈ O(D, X), f(0) = x, f

′
(0) = v

}
.

Our goal is to check whether Fϕ is plurisabharmonic in Ω. For any x ∈ X we set:

EHϕ(x) = inf
{

1

2π

∫ 2π

0
ϕof(eiθ)dθ, f ∈ O(D, X), f(0) = x

}
.

Poletsky has proved that EHϕ is plurisubharmonic and EHϕ = sup{u ∈ PSH(X), u ≤ ϕ}.
Notice that, EHϕ(x) ≤ Fϕ(x, v), for any v ∈ Cn, such that, (x, v) ∈ Ω.

Theorem 1 The function Fϕ(., 0) is plurisubharmonic. Where :

Fϕ(x, 0) = inf
{

1

2π

∫ 2π

0
ϕof(eiθ)dθ, f ∈ O(D, X), f(0) = x, f

′
(0) = 0

}
.

And for any integer k>0 we have :

Fϕ(x, 0) = inf
{

1

2π

∫ 2π

0
ϕof(eiθ)dθ, f ∈ O(D, X), f(0) = x, f (1)(0) = ... = f (k)(0) = 0

}
= EHϕ(x).

Before to prove this theorem let’s state and prove the following lemma.

Lemma 1 : Let ϕ ∈ C(X), then, Fϕ ∈ USC(Ω) and for any, (x, v) ∈ Ω, we have :

Fϕ(x, v) = inf
{

1

2π

∫ 2π

0
EHϕof(eiθ)dθ, f ∈ O(D, X), f(0) = x, f

′
(0) = v

}
.

Proof 1 :
Fϕ ∈ USC(Ω).
Let (x0, v0) ∈ Ω, c ∈ R and assume that Fϕ(x0, v0) < c. We need to show that there exists an
open neighbourhood V , of (x0, v0) in Ω such that Fϕ(x, v) < c for all (x, v) ∈ V .
By definition of enveloppe, there exists f0 ∈ O(D, X), f0(0) = x0, f

′
0(0) = v0, such that:

Fϕ(x0, v0) ≤
∫
T
ϕ(f0(t))dσ(t) < c.
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We choose a compact neighbourhood U of (x0, v0) in Ω, such that :
{f0(z) + (x− x0) + z(v − v0), z ∈ D} ⊂⊂ X for all (x, v) ∈ U and define:

fx,v(z) = f0(z) + x− x0 + z(v − v0).

Recall that ϕ ∈ C(X) and F is continuous on U where:

F (x, v) =

∫
T
ϕ(f0(t) + x− x0 + t(v − v0))dσ(t).

Since F (x0, v0) < c, it follows that there exists a neighbourhood V of (x0, v0) contained in U ,
such that for any (x, v) ∈ V , we have: Fϕ(x, v) < c. Hence Fϕ ∈ USC(Ω).
We prove the equality.
Let (x, v) ∈ Ω, as EHϕ ≤ ϕ then we have :

inf
{

1

2π

∫ 2π

0
EHϕof(eiθ)dθ, f ∈ O(D, X), f(0) = x, f

′
(0) = v

}
≤

inf
{

1

2π

∫ 2π

0
ϕof(eiθ)dθ, f ∈ O(D, X), f(0) = x, f

′
(0) = v

}
= Fϕ(x, v).

In order to show the other inequality we have to prove that: Fϕ(x, v) ≤ 1
2π

∫ 2π
0 EHϕoh(eiθ)dθ for

any h ∈ O(D, X) with h(0) = x, h′
(0) = v. We will get, this, if we reach to prove that for any

P ∈ C(X) with EHϕ ≤ P we have : Fϕ(x, v) ≤ 1
2π

∫ 2π
0 Poh(eiθ)dθ for any h ∈ O(D, X) with

h(0) = x, h′
(0) = v.

Let ε > 0, (x, v) ∈ Ω, h ∈ O(D, X) with h(0) = x, h′
(0) = v and for any P ∈ C(X) with

EHϕ ≤ P. We construct g ∈ O(D, X), g(0) = x, g′
(0) = v such that:

1

2π

∫ 2π

0
ϕog(eiθ)dθ ≤ 1

2π

∫ 2π

0
Poh(eiθ)dθ + ε.

To simplify the work, for any f ∈ O(D, X) we denote by Hϕ(f) the average of ϕ on the boundary
of the analytic disc f . In other word Hϕ(f) = 1

2π

∫ 2π
0 ϕoh(eiθ)dθ.

Let (x, v) ∈ Ω, ε > 0 and h ∈ O(D, X) with h(0) = x, h′
(0) = v. For every w0 ∈ T, Poletsky’s

theorem ensures that there exists r0 > 1 and f0 ∈ O(Dr0 , X), f0(0) = h(w0) such that:

Hϕ(f0) ≤ P (h(w0)) + ε.

Since ϕ ∈ C(X), P ∈ C(X), there exists an open arc, I0 3 w0 such that:

f0(Dr0) + h(w)− h(w0) ⊂⊂ X,w ∈ I0.

and ∫
T
ϕ(f0(t) + h(w)− h(w0))dσ(t) ≤ P (h(w)) + ε, w ∈ I0.

We define:
F0 : Dr0 × I0 −→ X, F0(z, w) = f0(z) + h(w)− h(w0).

Then F0 ∈ C∞(Dr0 × I0, X), F0(., w) ∈ O(Dr0 , X), F0(0, w) = h(w) and

Hϕ(F0(., w)) ≤ P (h(w)) + ε, w ∈ I0.
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A simple compactness argument shows that there exists a cover of T by open arcs {Ij}Nj=1, rj > 1
and Fj ∈ C∞(Drj×Ij , X) with Fj(., w) ∈ O(Drj , X), Fj(0, w) = h(w)) , Fj(Drj×Ij) is relatively
compact in X, and

Hϕ(Fj(., w)) ≤ P (h(w)) + ε, w ∈ Ij .

We set r=min rj, let K be a compact subset of X containing all the images, Fj(Dr × Ij)∪ h(D),
and choose

C > maxK(|ϕ|+ |P |).

There exists disjoint closed arcs Jj ⊂ Ij for j ∈ {1, ..., N} such that

σ(T \
⋃
j

Jj) < ε/C.

Now we choose disjoint open arcs Kj such that Jj ⊂ Kj ⊂ Ij , and a function ρ ∈ C∞(T, [0, 1])

satisfying ρ(w) = 1 if w ∈
⋃N
j=1 Jj and ρ(w) = 0 if w ∈ T \

⋃
jKj , and finally we define

F (z, w) =

{
Fj(ρ(w)z, w), z ∈ Dr, w ∈ Kj , j = 1, ..., N

h(w), z ∈ Dr, w ∈ T \
⋃
jKj .

The choice of ρ ensures that F ∈ C∞(Dr × T, X) and F (., w) ∈ O(Dr, X), F (0, w) = h(w) for
all w ∈ T. Hence

∫
T
Hϕ(F (., w))dσ(w) =

∫
T×T

ϕ(F (z, w))dσ(z)dσ(w)

≤
N∑
j=1

∫
Jj

∫
T
ϕ(Fj(z, w))dσ(z)

dσ(w) + Cσ(T \
⋃
j

Jj)

≤
N∑
j=1

∫
Jj

Hϕ(Fj(., w))dσ(w) + ε ≤
N∑
j=1

∫
Jj

P (h(w))dσ(w) + ε+ ε

≤
∫
T
P (h(w))dσ(t) + 2ε+ Cσ(T \

⋃
j

Jj) ≤
∫
T
P (h(w))dσ(w) + 3ε.

Observe that:

F (z, w) = h(w) +
+∞∑

k=−∞

(
1

2π

∫ 2π

0
(F (z, eiθ)− h(eiθ))e−ikdθ

)
wk.

Since the map :
R 3 θ 7→ F (z, eiθ)− h(eiθ) ∈ Cn,

is infinitely differentiable with period 2π, the Fourier series converges uniformly on T for any
z ∈ Dr0 . Where 1 < r0 < r.
Now we introduce the j-th partial sums of the series :

Gj(z, w) = h(w) +

j∑
k=−j

(
1

2π

∫ 2π

0
(F (z, eiθ)− h(eiθ))e−ikθdθ

)
wk.
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Since Gj −→ F uniformly on Dr0 × T as j −→ +∞ there exists j0 such that

Gj(Dr0 × T) ⊂ X, j ≥ j0.

and ∫
T
Hϕ(Gj(., w))dσ(w) ≤

∫
T
Hϕ(F (., w))dσ(w) + ε.

Notice that:
Gj ∈ O(Dr × C∗,Cn).
w 7→ Gj(z, w) has a pole at 0 of order ≤ j for every z ∈ Dr.
Since F (0, eiθ) = h(eiθ) for all θ, the function z 7→ Gj(z, w)− h(w) has a zero at the origin for
all w.
We can write

Gj(z, w) = h(w) + zw−jQj(z, w), where Qj ∈ O(Dr × C,Cn).

For every k ≥ j we get

Gj(zw
k, w) = h(w) + zwk−jQj(zw

k, w) ∈ O(D× D,Cn).

Since Gj(z, w) ∈ X for all (z, w) ∈ D× T and j ≥ j0, we can choose ηj ∈]0, 1[ such that

Gj(z, w) ∈ X, (z, w) ∈ D× (D \Dηj ).

We even have for every k ≥ j, that:

Gj(zw
k, w) ∈ X, (z, w) ∈ D× (D \Dηj ).

Since Gj(0, w) = h(w) ∈ X for all w ∈ D there exists δj , such that

Gj(zw
j , w) ∈ X, (z, w) ∈ Dδj × D.

If we take kj > j such that zwkj ∈ Dδj for (z, w) ∈ D×Dηj . We have

Gj(zw
kj , w) ∈ X, (z, w) ∈ D×Dηj .

Recall that j > j0 sufficiently large, we have

Gj(D× T) ⊂ X,∫
T
Hϕ(Gj(., w))dσ(w) ≤

∫
T
Hϕ(F (., w))dσ(w) + ε.

Take kj > j + 1 and set:

G(z, w) = Gj(zw
kj , w) = h(w) + zwkj−jQj(zw

kj , w) ∈ O(D× D, X).

We have ∫
T
Hϕ(G(., w))dσ(w) =

1

2π2

∫ 2π

0

∫ 2π

0
ϕ(Gj(e

i(α+kjθ), eiθ))dαdθ

=
1

2π2

∫ 2π

0

∫ 2π

0
ϕ(Gj(e

iα, eiθ))dαdθ =

∫
T
Hϕ(Gj(., w))dσ(w)

≤
∫
T
Hϕ(F (., w))dσ(w) + ε.
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As ϕoG is continuous on T× T. We set

ϕoG(z0, w0) = ϕoGj(z0w
kj
0 , w0) = min{ϕoGj(zwkj , w), (z, w) ∈ T× T},

and we take
g(w) = Gj(w

kjeiα0 , w).

Notice that g ∈ O(D, X), g(0) = h(0), g
′
(0) = h

′
(0) and

Hϕ(g) =

∫ 2π

0
ϕ(Gj(e

iα0eikjθ, eiθ))dθ ≤ 1

2π

∫ 2π

0

∫ 2π

0
ϕ(Gj(e

iαeikjθ, eiθ))dαdθ

=

∫
T
Hϕ(Gj(., w))dσ(w) ≤

∫
T
Hϕ(F (., w))dσ(w) + ε ≤

∫
T
P (h(w))dσ(w) + 4ε.

So Fϕ(x, v) ≤
∫
T P (h(w))dσ(w) + 4ε for any ε > 0 hence Fϕ(x, v) ≤

∫
T P (h(w))dσ(w). We have

this for any continuous function P bigger than EHϕ by monotonie convergence theorem we get
Fϕ(x, v) ≤ 1

2π

∫ 2π
0 EHϕoh(eiθ)dθ. As h is arbitrary so we have:

Fϕ(x, v) ≤ inf
{

1

2π

∫ 2π

0
EHϕof(eiθ)dθ, f ∈ O(D, X), f(0) = x, f

′
(0) = v)

}
.

Proof of theorem1.

Proof 2 For x ∈ X if we consider the constant disc f = x, Lemma 1, gives, Fϕ(x, 0) ≤
EHϕ(x), hence Fϕ(x, 0) = EHϕ(x). So Fϕ(., 0) ∈ PSH(X) and it coincides with the largest
plurisubhamonic function less than ϕ.
Let k > 0 , x ∈ X, h ∈ O(D, X) with h(0) = x, h(1)(0) = ... = h(k)(0) = 0 if we repeat the proof
of Lemma 1, we get,

inf
{

1

2π

∫ 2π

0
ϕof(eiθ)dθ, f ∈ O(D, X), f(0) = x, f (1)(0) = ... = f (k)(0) = 0

}
≤ 1

2π

∫ 2π

0
EHϕoh(eiθ)dθ.

On considering the constant disc we get

inf
{

1

2π

∫ 2π

0
ϕof(eiθ)dθ, f ∈ O(D, X), f(0) = x, f (1)(0) = ... = f (k)(0) = 0

}
= EHϕ(x) = Fϕ(x, 0).
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