PLURISUBHARMONIC FUNCTIONS
AS ENVELOPES OF THE RESTRICTIONS OF DISC FUNCTIONALS

Abstract: We consider the set of analytic disc in an open set X C C™ which derivative at the
origin is zero and we prove that the envelope of Poisson’s disc functional on this set is plurisub-
harmonic.

INTRODUCTION

Denote by D the unit disk in C. We recall the definition of the Kobayashi-Royden pseudo-
metric Kx of a domain X C C™.

Kx(z,v) = inf{a >0, there is f € O(D, X), f(0) = z,af (0) = v}

where z € X, v € C". And we set Q = {(z,v) € X xC", Kx(z,v) < 1}. For ¢ : X — R upper
semicontinuous, (x,v) € €2, we define :

27
Fy(z,v) = 1nf{217r/0 wof(e?)dd, f € O, X), f(0) =z, f (0) = v} .

Our goal is to check whether F, is plurisabharmonic in €. For any = € X we set:

27
EH,(z) = inf{;ﬂ/o wof(e?)df, f € O(D, X), f(0) = x}

Poletsky has proved that EH, is plurisubharmonic and EH, = sup{u € PSH(X),u < ¢}.
Notice that, EH,(x) < F,(z,v), for any v € C", such that, (z,v) € Q.

Theorem 1 The function F,(.,0) is plurisubharmonic. Where :
F,(z,0) = mf{;ﬂ /:w wof(e?)dh, f € O(D, X), f(0) =z, f (0) = 0} .
And for any integer k>0 we have :
Fy(z,0) = mf{;7r /0% wof(e?)db, f € O(D, X), £(0) =z, fD(0) =... = fP(0) = o} = EH, ().

Before to prove this theorem let’s state and prove the following lemma.

Lemma 1 : Let ¢ € C(X), then, F, € USC(Q) and for any, (x,v) € Q, we have :

Fy(xz,v) = inf {2171 OQW EHwof(eie)dﬁ,f € O(D, X), f(0) =z, f (0) = v} .

Proof 1 :

F, e USC(Q).

Let (zo,v0) € Q,c € R and assume that F(xo,v0) < c. We need to show that there exists an
open neighbourhood V', of (xg,vp) in Q such that Fy(z,v) < ¢ for all (x,v) € V.

By definition of enveloppe, there exists fo € O(D, X), fo(0) = o, fé(O) = vy, such that:

Folan.w) < [ o(ot)do(t) <

1



We choose a compact neighbourhood U of (xg,vg) in Q, such that :
{fo(z) + (x —z0) + z(v —vg), 2 € D} CC X for all (x,v) € U and define:

few(2) = fo(2) + @ — 20 + 2(v — v0).

Recall that ¢ € C(X) and F is continuous on U where:

F(z,v) = /Tgp(fo(t) + 2 —x0+ t(v — vo))do(t).

Since F(xg,vo) < ¢, it follows that there exists a neighbourhood V' of (xo,vo) contained in U,
such that for any (x,v) € V, we have: Fy(x,v) < c. Hence F, € USC(Q).

We prove the equality.

Let (xz,v) € Q, as EH, < ¢ then we have :

2w

inf {;ﬁ i EHof(e'%)df, f € O(D, X), f(0) =z, f (0) = v} <

27
inf {;ﬁ/g cof(c)do, f € O, X), (0) = z, f (0) = v} _ F(z,0).

In order to show the other inequality we have to prove that: Fy(z,v) < 5 027T EHoh(e)dd for
any h € O(D, X) with h(0) =z, K’ (0) = v. We will get, this, if we reach to prove that for any
P e O(X) with EH, < P we have : Fy(z,v) < %fozw Poh(e9)df for any h € O(D, X) with
h(0) =z, h'(0) = v.

Let € > 0, (z,v) € Q, h € O(D, X) with h(0) = z, h'(0) = v and for any P € C(X) with
EH, < P. We construct g € O(D, X), g(0) =z, g (0) = v such that:

™

1 2m ) 1 2m )
/ wog(e®)df < / Poh(e?)d + e.
2w 0 2 0

To simplify the work, for any f € O(D, X) we denote by Hy(f) the average of ¢ on the boundary

of the analytic disc f. In other word Hy(f) = &= 027T woh(e')do.

Let (z,v) € Q, € >0 and h € O(D, X) with h(0) = z, ' (0) = v. For every wy € T, Poletsky’s
theorem ensures that there exists ro > 1 and fo € O(Dy,, X), f0(0) = h(wo) such that:

Ho(fo) < P(h(uo)) +
Since p € C(X), P € C(X), there exists an open arc, Iy 3 wgy such that:
fo(Dry) + h(w) — h(wg) CC X,w € Iy.

and
lAMh@+hW%W@mwdﬂ<PWWD+aweh

We define:
Fy: Dy, x In — X, Fy(z,w) = fo(2) + h(w) — h(wy).

Then Fy € C*°(Dy, x In, X), Fo(.,w) € O(Dy,, X), Fo(0,w) = h(w) and

HSO(FQ(.,’LU)) < P(h(w)) +€,w € Iy.



A simple compactness arqgument shows that there exists a cover of T by open arcs {1; }J Lri>1
and Fy € C%°(D,,; x I, X) with Fj(.,w) € O(Dy,, X), F;(0,w) = h(w)) , Fj(D,; xI;) is relatively
compact in X, and

Hw(Fj(.,w)) < P(h(w)) +ew e Ij.

We set r=min rj, let K be a compact subset of X containing all the images, Fj(D, x I;) Uh(D),
and choose

C > mazg (l¢| + | P).
There exists disjoint closed arcs J; C I for j € {1,..., N} such that

o(T\|JJ;) < e€/C.
J

Now we choose disjoint open arcs K; such that J; C K; C I, and a function p € C*(T,[0,1])
satisfying p(w) =1 if w € Ujvzl Jj and p(w) =0 if w e T\ Uj Kj, and finally we define

Fi(p(w)z,w), z€Dp,weK;,j=1,..

N
F(%w):{ h(w),  z€ DpweT\U;K;.

)

The choice of p ensures that F' € C*(D, x T, X) and F(.,w) € O(D,,X), F(0,w) = h(w) for
allw e T. Hence

[ HoAPCw)dotw) = [ plF e w)dat:)datw
T TxT

N
gg /J /T (Fy(z,w))do(2) | do(w) + Co(T\ | ) J;)

i
<Z ))do (w +e<2/ (w) +e+e

/ P(h ) 4 2¢ + Co (T \ U J;) /TP(h(w))da(w) + 3e.

Observe that:

Since the map : A A
R >0 — F(z,e?%) — h(e?) e CT,

is infinitely differentiable with period 2w, the Fourier series converges uniformly on T for any
2 € Dyy. Where 1 <rg <.
Now we introduce the j-th partial sums of the series :

Gz, w Z ( /W (2, €) — h(e?))e —“f@de)w’f.

k=—j



Since G; — F uniformly on Dy, x T as j — 400 there exists jo such that

Gj(DTO XT) CX7]2]O

/Hw(Gj(.,w))da(w) g/Hw(F(.,w))da(w)—l—e.
T T
Notice that:

Gj € O(D, x C*,C").

w — Gj(z,w) has a pole at 0 of order < j for every z € D,.

Since F(0,e) = h(e®) for all 0, the function z — G;(z,w) — h(w) has a zero at the origin for
all w.

We can write

and

Gj(z,w) = h(w) + 2w Q;(z,w), where Q; € O(D, x C,C").
For every k > 5 we get
G(zw®, w) = h(w) + 207 Q; (2w, w) € O(D x D,C").

Since Gj(z,w) € X for all (z,w) € D x T and j > jo, we can choose n; €]0,1] such that

Gi(z,w) € X, (z,w) €D x (D\ Dy,).
We even have for every k > j, that:

G;(zw* w) € X, (z,w) €D x (D\ Dy,).

Since Gj(0,w) = h(w) € X for all w € D there exists &, such that

Gj(zw’,w) € X, (z,w) € Ds; x D.
If we take kj > j such that 2w € Ds; for (z,w) € D x Dy,. We have

Gj(zwk w) € X, (z,w) €D x Dy,
Recall that j > jo sufficiently large, we have

Gj(ﬁXT) cX

/Hw(c;j(.,w))da(w) </H¢(F(.,w))da(w)+e.
T T

Take kj > j+1 and set:

G(z,w) = G (2w w) = h(w) + 2w Q; (2w, w) € O(D x D, X).

/T H (G, w) - / o / (GO o)) dads
-5 / 2”¢<Gj<em,ei9>>dad9 - / H, (G (. w0)do (w)
< [ HAP(w)idr(w) +

We have



As poG is continuous on T x T. We set

©oG (20, wp) = @oGj(zong,wo) = min{poG (2w w), (z,w) € T x T},

and we take '
g(w) = Gj(whi e w).

Notice that g € O(D, X), g(0) = h(0), 4 (0) = h'(0) and

27 " 2w 27 ) )
H4p(g) — /O SO(Gj(eioa)eilcj@’ez d@ < 27r/ / mezkzje,eze))dade

:/THQP(GJ'(., /H w))do(w —|—6</P w))do(w) + 4e.

So Fy(x,v) < [p P(h(w))do(w)+4e for any e > 0 hence Fy(x,v) < [; P(h(w))do(w). We have
this for any continuous function P bigger than EH, by monotonie convergence theorem we get
Fy(z,v) < 5= OQW EHoh(e®)df. As h is arbitrary so we have:

2T
Fo(a,0) < inf {;ﬁ EH,0f(¢*)d6, f € O(D, X), f(0) = a, f(0) = v)} .

0

Proof of theoreml.

Proof 2 For x € X if we consider the constant disc f = x, Lemma 1, gives, F,(x,0) <
EH,(x), hence Fy(x,0) = EH,(x). So F,(.,0) € PSH(X) and it coincides with the largest
plurisubhamonic function less than .

Letk>0,z€ X, heOD,X) with h(0) =z, hD(0) = ... = h®)(0) = 0 if we repeat the proof

of Lemma 1, we get,

1 2m ) o 1 2 )
mf{%/o pof(e?)do, f € OD, X), f(0) =z, fD(0) = ... = fF(0) = 0} <o ), EHgoh(e?)d6.
On considering the constant disc we get

2
inf{;w / pof(e?)dd, f € O(D, X), f(0) =z, f1(0) = ... = fP(0) = 0} = EH,(x) = Fy(,0).
0



