A COUNTEREXAMPLE TO BREMERMANN'S THEOREM ON SHILOV BOUNDARIES

MAREK JARNICKI AND PETER PFLUG

Definition 1. Let $D \subset \mathbb{C}^{n}$ be a bounded domain. Define

$$
\mathcal{A}(D):=\mathcal{C}(\bar{D}) \cap \mathcal{O}(D), \quad \mathcal{B}(D):=\operatorname{cl}_{\mathcal{C}(\bar{D})} \mathcal{O}(\bar{D})
$$

Let $\partial_{S} D$ (resp. $\partial_{B} D$) be the Shilov (resp. Bergman) boundary of D, i.e. the minimal compact set $K \subset \bar{D}$ such that $\max _{K}|f|=\max _{\bar{D}}|f|$ for every $f \in \mathcal{A}(D)$ (resp. $f \in \mathcal{B}(D)$).

One can easily prove that in the case of the Bergman boundary it suffices to check that $\max _{K}|f|=\max _{\bar{D}}|f|$ for every $f \in \mathcal{O}(\bar{D})$.

Obviously, $\mathcal{B}(D) \subset \mathcal{A}(D)$. In particular, $\partial_{B} D \subset \partial_{S} D \subset \partial D$. Notice that in general $\partial_{B} D \nsubseteq \partial_{S} D$, e.g. if $D:=\left\{(z, w) \in \mathbb{D}_{*} \times \mathbb{C}:|w|<|z|^{-\log |z|}\right\} \subset \mathbb{D}_{*} \times \mathbb{D}$, then $\mathbb{T}^{2}=\partial_{B} D \varsubsetneqq\left\{\overline{\mathbb{D}} \times \mathbb{C}:|w|=|z|^{-\log |z|}\right\}=\partial_{S} D$.

Assume that the envelope of holomorphy \widetilde{D} of D is univalent. It is well-known that $\sup _{\widetilde{D}}|g|=\sup _{D}|g|$ for every $g \in \mathcal{O}(\widetilde{D})$. In particular, \widetilde{D} is bounded.

Take a $g \in \mathcal{A}(\widetilde{D})($ resp. $g \in \mathcal{B}(\widetilde{D}))$ and let $C:=\max _{\partial_{S} D}|g|$ (resp. $\left.C:=\max _{\partial_{B} D}|g|\right)$. Since $\left.\mathcal{A}(\widetilde{D})\right|_{\bar{D}} \subset \mathcal{A}(D)$ (resp. $\left.\mathcal{O}(\overline{\widetilde{D}})\right|_{\bar{D}} \subset \mathcal{O}(\bar{D})$), we get $|g| \leq C$ on D. Hence $|g| \leq C$ on \widetilde{D}. Consequently, $\partial_{S} \widetilde{D} \subset \partial_{S} D$ (resp. $\partial_{B} \widetilde{D} \subset$ $\left.\partial_{B} D\right)$.

In [Bre 1959], p. 259, H. J. Bremermann wrote: On the other hand it is trivial that $\partial_{S} D \subset \partial_{S} \widetilde{D}$.
Remark 2. (a) The inclusion $\partial_{S} D \subset \partial_{S} \widetilde{D}$ is really trivial if we additionally assume that $\left.\mathcal{A}(D) \subset \mathcal{A}(\widetilde{D})\right|_{\bar{D}}$.
(b) There exists a Reinhardt domain $D \subset \mathbb{C}_{*} \times \mathbb{C}$ such that $\left.\mathcal{A}(D) \not \subset \mathcal{A}(\widetilde{D})\right|_{\bar{D}}$ (cf. [Kos-Zwo 2013], Example 6.1).
(c) $\partial_{S} D \subset \partial_{S} \widetilde{D}$ for every bounded Reinhardt domain ([Kos-Zwo 2013], Corollary 6.2).
(d) If we additionally assume that $\left.\mathcal{O}(\bar{D}) \subset \mathcal{O}(\overline{\widetilde{D}})\right|_{\bar{D}}$, then $\partial_{B} D \subset \partial_{B} \widetilde{D}$.
(e) If we additionally assume that \bar{D} has a neighborhood basis consisting of domains with univalent envelopes of holomorphy, then $\left.\mathcal{O}(\bar{D}) \subset \mathcal{O}(\widetilde{\widetilde{D}})\right|_{\bar{D}}$. Consequently, $\partial_{B} D=\partial_{B} \widetilde{D}$.

Indeed, take an $f \in \mathcal{O}(\bar{D})$, say $f \in \mathcal{O}(G)$, where G is a bounded domain with univalent envelope of holomorphy \widetilde{G} with $\bar{D} \subset G$. Then f extends to an $\widetilde{f} \in \mathcal{O}(\widetilde{G})$. We only need to show that $\widetilde{D} \subset \widetilde{G}$.

It is known (cf. e.g. [Jar-Pfl 2000], Theorem 1.10.4(iii)) $\operatorname{dist}\left(\widehat{\bar{D}}_{\mathcal{O}(\widetilde{G})}, \partial \widetilde{G}\right)=\operatorname{dist}(\bar{D}, \partial \widetilde{G})$. It remains to observe that $\widetilde{D} \subset \widehat{\bar{D}}_{\mathcal{O}(\widetilde{G})}$.
(f) If $D \subset \mathbb{C}^{n}$ is bounded balanced domain, then $\partial_{B} D=\partial_{B} \widetilde{D}$.

Indeed, first recall (cf. e.g. [Jar-Pfl 2000], Remark 1.9.6(e)) that the envelope of holomorphy of a balanced domain is always a balanced domain, in particular, it is univalent. Moreover, $(\bar{D}+\mathbb{B}(\varepsilon))_{\varepsilon>0}$ forms a neighborhood basis of \bar{D} consisting of bounded balanced domains.
(g) ? It is not known whether $\partial_{S} D=\partial_{S} \widetilde{D}$ for bounded balanced domains $D ? ?$

Theorem 3. There exists a bounded Hartogs domain $D \subset \mathbb{C}^{2}$ with a univalent envelope of holomorphy \widetilde{D} such that:

- $\partial_{S} D \neq \partial_{S} \widetilde{D}$,
- $\partial_{B} D \neq \partial_{B} \widetilde{D}$,
- $\left.\mathcal{O}(\bar{D}) \not \subset \mathcal{A}(\widetilde{D})\right|_{\bar{D}}$.

Proof. Let $A:=\{z \in \mathbb{C}: 1 / 2<|z|<1\}, I:=[1 / 2,1]$. Then we introduce

$$
\begin{aligned}
D:=\{ & \left(r e^{i \varphi}, w\right) \in(A \backslash I) \times \mathbb{D}(3): \\
& \varphi \in(0, \pi / 2] \Longrightarrow|w|<1 \\
& \varphi \in(\pi / 2,3 \pi / 2) \Longrightarrow|w|<3 \\
& \varphi \in[3 \pi / 2,2 \pi) \Longrightarrow 2<|w|<3\}=: D_{1} \cup D_{2,3} \cup D_{4}
\end{aligned}
$$

Note that D is a Hartogs domain over $A \backslash I$ with connected circular fibers and $D \cap((A \backslash I) \times\{0\}) \neq \varnothing$. Then Corollary 3.1.10(b) in [Jar-Pfl 2000] implies that D has a univalent envelope of holomorphy \widetilde{D}. Moreover, using the Cauchy integral formula shows that \widetilde{D} contains the domain

$$
\left\{\left(r e^{i \varphi}, w\right) \in(A \backslash I) \times \mathbb{D}(3): \varphi \in(\pi / 2,2 \pi)\right\}
$$

In particular, $\{x\} \times \mathbb{D}(3) \subset \widetilde{D}, x \in I$. Therefore, if $f \in \mathcal{A}(\widetilde{D})$, then $f(x, \cdot) \in \mathcal{A}(\mathbb{D}(3)), x \in I$ (use the Weierstrass theorem). Hence, by maximum principle, $(I \times \mathbb{D}(3)) \cap \partial_{S} \widetilde{D}=\varnothing$.

Fix $0<\varepsilon \ll 1 / 2$ and put $A^{\prime}:=\{z \in \mathbb{C}: 1 / 2-\varepsilon<|z|<1+\varepsilon\}$,

$$
\begin{aligned}
D^{\prime}:=\{ & \left(r e^{i \varphi}, w\right) \in A \times \mathbb{D}(3+\varepsilon): \\
& \varphi \in(-\varepsilon, \pi / 2] \Longrightarrow|w|<1+\varepsilon, \\
& \varphi \in(\pi / 2-\varepsilon, 3 \pi / 2+\varepsilon) \Longrightarrow|w|<3+\varepsilon \\
& \varphi \in[3 \pi / 2,2 \pi+\varepsilon) \Longrightarrow 2-\varepsilon<|w|<3+\varepsilon\}=D_{1}^{\prime} \cup D_{2,3}^{\prime} \cup D_{4}^{\prime} .
\end{aligned}
$$

Observe that $\bar{D} \subset D^{\prime}$.
Let L_{1} (resp. L_{2}) denote the branch of the logarithm defined on $\mathbb{C} \backslash\{x+i y \in \mathbb{C}: x \geq 0, y=x\}$ (resp. $\mathbb{C} \backslash\{x+i y \in \mathbb{C}: x \geq 0, y=-x\}$) such that $L_{1}(-1 / 2)=L_{2}(-1 / 2)=\log (1 / 2)+\pi i$. Now we define $g: D^{\prime} \longrightarrow \mathbb{C}:$

$$
g(z, w):= \begin{cases}L_{1}(z), & \text { if }(z, w) \in D^{\prime},|w|>1.4 \\ L_{2}(z), & \text { if }(z, w) \in D^{\prime},|w|<1.6\end{cases}
$$

Observe that g is well defined and $g \in \mathcal{O}\left(D^{\prime}\right)$. Put $f:=\left.g\right|_{\bar{D}}$. Then $f \in \mathcal{O}(\bar{D})$ and $f(z, w)=\log (-z)+\pi i$, $(z, w) \in D$. Thus

$$
f(x, w)=\left\{\begin{array}{ll}
\log x, & \text { if }|w| \leq 1 \\
\log x+2 \pi i, & \text { if } 2 \leq|w| \leq 3
\end{array}, \quad x \in I\right.
$$

Finally, we observe that $h:=\exp (i f+2 \pi) \in \mathcal{O}(\bar{D})$,

$$
|h(x, w)|=\left\{\begin{array}{ll}
e^{2 \pi}, & \text { if }|w| \leq 1 \\
1, & \text { if } 2 \leq|w| \leq 3
\end{array}, \quad x \in I\right.
$$

and $|h|=e^{\operatorname{Im} f+2 \pi}<e^{2 \pi}$ on the remaining part of \bar{D}. Therefore, $(I \times \overline{\mathbb{D}}) \cap \partial_{B} D \neq \varnothing$. In particular, $\left.f \notin \mathcal{A}(\widetilde{D})\right|_{\bar{D}}$ and $\partial_{B} \widetilde{D} \subset \partial_{S} \widetilde{D} \varsubsetneqq \partial_{B} D \subset \partial_{S} D$.

References

[Bre 1959] H. J. Bremermann, On a generalized Dirichlet problem for plurisubharmonic functions and pseudo-convex domains. Characterization of Silov boundaries, Trans. Amer. Math. Soc. 91, 246-276 (1959).
[Jar-Pf 2000] M. Jarnicki, P. Pflug, Extension of Holomorphic Functions, de Gruyter Expositions in Mathematics 34, Walter de Gruyter, 2000.
[Kos-Zwo 2013] Ł. Kosiński, W. Zwonek, Proper holomorphic mappings vs. peak points and Shilov boundary, Ann. Polon. Math. 107, 97-108 (2013).

