NON-NATURAL FRÉCHET SPACES OF HOLOMORPHIC FUNCTIONS

MAREK JARNICKI

Based [Vog 2013].

We assume that all the complex manifolds which will appear below are countable at infinity.

Definition 1. For a complex manifold X, let τ_X denote the topology of almost uniform convergence on $\mathcal{O}(X)$, i.e. the topology generated by the seminorms

$$\mathcal{O}(X) \ni f \longmapsto ||f||_K := \sup_K |f|, \quad K \subset \subset X.$$

It is well know that $(\mathcal{O}(X), \tau_X)$ is a Fréchet space. Suppose that (\mathcal{F}, τ) is another Fréchet space in $\mathcal{O}(X)$, i.e. $\mathcal{F} \subset \mathcal{O}(X)$ and (\mathcal{F}, τ) is a Fréchet space. We say that (\mathcal{F}, τ) is a natural Fréchet space in $\mathcal{O}(X)$ if the identity mapping id : $(\mathcal{F}, \tau) \longrightarrow (\mathcal{O}(X), \tau_X)$ is continuous.

Remark 2. Let (\mathcal{F}, τ) be a Fréchet space in $\mathcal{O}(X)$. Then (\mathcal{F}, τ) is natural iff for every sequence $(f_s)_{s=0}^{\infty} \subset \mathcal{F}$ we have: $f_s \xrightarrow{\tau} f_0 \Longrightarrow f_s \longrightarrow f_0$ pointwise on X.

The question whether there are non-natural Fréchet spaces (\mathcal{F}, τ) in $\mathcal{O}(X)$ remained open for many years (cf. [Jar-Pfl 2008], Remark 1.10.6(b)).

Proposition 3. If X is a connected complex manifold and (\mathcal{F}, τ) is a natural Fréchet space in $\mathcal{O}(X)$, then there exists a continuous norm on \mathcal{F} .

Proof. Let $(q_i)_{i=1}^{\infty}$ be a family of seminorms on \mathcal{F} that generates τ . Take a compact $K \subset X$ with $\operatorname{int} K \neq \emptyset$. The continuity of $\operatorname{id} : (\mathcal{F}, \tau) \longrightarrow (\mathcal{O}(X), \tau_X)$ implies that there exist $C > 0, n \in \mathbb{N}$, and $i_1, \ldots, i_n \in \mathbb{N}$ such that

$$||f||_K \le C \max\{q_{i_1}(f), \dots, q_{i_n}(f)\}, \quad f \in \mathcal{F}.$$

Consequently, by the identity principle for holomorphic functions, $\| \|_{K}$ is a continuous norm on \mathcal{F} .

Definition 4. Let $\omega := \mathbb{C}^{\mathbb{N}}$. Put

$$p_n(x) := \max\{|x_1|, \dots, |x_n|\}, \quad x = (x_i)_{i=1}^{\infty} \in \omega, \quad n \in \mathbb{N}.$$

It is well know that ω endowed with the topology generated by the seminorms $(p_n)_{n=1}^{\infty}$ is a Fréchet space.

Proposition 5. There are no continuous norms on ω .

Proof. Suppose that q is such a norm. Then there exist C > 0 and $n \in \mathbb{N}$ such that $q \leq Cp_n$. In particular, q(x) = 0 if $x_1 = \cdots = x_n = 0$ — a contradiction.

Theorem 6. Let X be a connected complex manifold and let $\mathcal{F} \subset \mathcal{O}(X)$ be a vector space such that dim $\mathcal{F} \geq \dim \omega$. Then on \mathcal{F} there exists a Fréchet topology τ such that (\mathcal{F}, τ) is not natural.

Proof. Let $(a_s)_{s=1}^{\infty} \subset X$ be dense. Define a linear mapping $I : \mathcal{F} \longrightarrow \omega$, $I(f) := (f(a_s))_{s=1}^{\infty}$. Since the sequence is dense, the operator I is injective. In particular, dim $\mathcal{F} \leq \dim \omega$. Consequently, there exists a linear isomorphism $L : \mathcal{F} \longrightarrow \omega$. Now, using L, we transport the topology of ω to \mathcal{F} . It remains to apply Propositions 3 and 5.

Thus, the main question is when dim $\mathcal{F} \geq \dim \omega$. Using Functional Analysis methods we get the following general answer.

MAREK JARNICKI

Theorem 7 (Main result). Let X be a connected complex manifold and let (\mathcal{F}, τ') be a Fréchet space such that $\mathcal{F} \subset \mathcal{O}(X)$ and (\mathcal{F}, τ') is not Banach (e.g. $(\mathcal{F}, \tau') = (\mathcal{O}(X), \tau_X)$). Then on \mathcal{F} there exists a Fréchet topology τ such that (\mathcal{F}, τ) is not natural.

Proof. By Eidelheit's theorem (cf. [Mei-Vog 1997], § 26.28) we get a linear surjective mapping $S : \mathcal{F} \longrightarrow \omega$. Hence dim $\mathcal{F} \ge \dim \omega$ and we apply Theorem 6.

[?] It would be nice to prove Theorem 7 using only complex analysis methods [?] Using only complex analysis methods we get the following weaker result.

Theorem 8. If X is a connected complex manifold with $\mathcal{O}(X) \neq \mathbb{C}$, then there exists a Fréchet topology τ on $\mathcal{O}(X)$ such that $(\mathcal{O}(X), \tau)$ is not natural.

Proof. Fix an arbitrary non-constant function $f_0 \in \mathcal{O}(X)$. Then D := f(X) is a planar domain. Let $(z_s)_{s=1}^{\infty} \subset D$ be a sequence without accumulations points in D. For every $s \in \mathbb{N}$ fix a point $b_s \in f_0^{-1}(z_s)$. Define a linear mapping $S : \mathcal{O}(X) \longrightarrow \omega$, $S(f) := (f(b_s))_{s=1}^{\infty}$. Then S is surjective. In fact, it is well known that for any sequence $x = (x_s)_{s=1}^{\infty} \in \omega$ there exists a function $\varphi \in \mathcal{O}(D)$ such that $f(z_s) = x_s, s \in \mathbb{N}$. Put $f := \varphi \circ f_0$. Then S(f) = x.

Thus dim $\omega \leq \dim \mathcal{O}(X)$ and we apply Theorem 6.

Remark 9. Let X be a disconnected complex manifold and let $X = X_1 \cup X_2$, where X_1, X_2 are non-empty open and disjoint. Let (\mathcal{F}_i, τ_i) be a Fréchet space in $\mathcal{O}(X_i)$, i = 1, 2. Define

$$\mathcal{F} := \{ f \in \mathcal{O}(X) : f |_{X_i} \in \mathcal{F}_i, \ i = 1, 2 \}.$$

Observe that in fact $\mathcal{F} \simeq \mathcal{F}_1 \times \mathcal{F}_2$. We define a topology τ on \mathcal{F} . If $(q_{i,k})_{k=1}^{\infty}$ is a family of seminorms generating τ_i , i = 1, 2, then τ is generated by the seminorms

$$\mathcal{F} \ni f \longmapsto q_{1,k}(f|_{X_1}) + q_{2,\ell}(f|_{X_2}), \quad k, \ell \in \mathbb{N}$$

Equivalently, for $(f_s)_{s=0}^{\infty} \subset \mathcal{F}$ we have

$$f_s \xrightarrow{\tau} f_0 :\iff f_s|_{X_i} \xrightarrow{\tau_i} f_0|_{X_i}, \ i = 1, 2.$$

Then:

- (\mathcal{F}, τ) is a Fréchet space in $\mathcal{O}(X)$,
- (\mathcal{F}, τ) is natural in $\mathcal{O}(X)$ iff (\mathcal{F}_i, τ_i) is natural in $\mathcal{O}(X_i)$, i = 1, 2,
- (\mathcal{F}, τ) is Banach in $\mathcal{O}(X)$ iff (\mathcal{F}_i, τ_i) is Banach in $\mathcal{O}(X_i), i = 1, 2$.

Consequently, if X_1 is connected and (\mathcal{F}, τ_1) is a non-natural Fréchet space in $\mathcal{O}(X_1)$ (produced, for instance, via Theorem 7), then for arbitrary Fréchet space (\mathcal{F}_2, τ_2) in $\mathcal{O}(X_2)$ we get a non-natural Fréchet space (\mathcal{F}, τ) in $\mathcal{O}(X)$.

References

- [Jar-Pfl 2008] Marek Jarnicki, Peter Pflug, First Steps in Several Complex Variables: Reinhardt Domains, European Mathematical Society Publishing House, 2008.
- [Mei-Vog 1997] Reinhold Meise, Dietmar Vogt, Introduction to Functional Analysis, Oxford Grad. Texts Math. 2, Clarendon Press, Oxford, 1997
- [Vog 2013] Dietmar Vogt, Non-natural topologies on spaces of holomorphic functions, Ann. Polon. Math. 108 (2013), 215–217.