EXTENSION OF CR-FUNCTIONS ON GENERALIZED TUBE DOMAINS (BASED ON PAPER BY A. BOGGESS, R. DWILEWICZ AND Z. SŁODKOWSKI)

TOMASZ WARSZAWSKI

Let $M \subset \mathbb{C}^n$ be a real submanifold and let $f : M \longrightarrow \mathbb{C}$ be \mathcal{C}^1 . Then f is said to be a CR-function if

$$\sum_{j=1}^{n} a_j \frac{\partial f}{\partial \overline{z}_j}(z) = 0$$

for any $a \in T_M^{\mathbb{C}}(z)$ and $z \in M$.

The following results from [2] are presented.

Theorem 1. Let $\Omega \subset \mathbb{C}^n$, $n \geq 2$, be a \mathcal{C}^{∞} domain with connected boundary. Moreover, assume that

$$\Omega \subset \{ z \in \mathbb{C}^n : |\operatorname{Re} z| \le |\operatorname{Im} z| - \Phi(\operatorname{Im} z) + C \},\$$

where C > 0 and $\Phi : \mathbb{R}^n \longrightarrow \mathbb{R}_{>0}$ has bounded sublevels $\{\Phi \leq c\}$.

Then any \mathcal{C}^{∞} -smooth CR-function on $\partial\Omega$ extends to a function from class $\mathcal{O}(\Omega) \cap \mathcal{C}^{\infty}(\mathbb{C}^n)$.

Theorem 2. Let $\Omega \subset \mathbb{C}^n$, $n \geq 2$, be a \mathcal{C}^{∞} domain with connected boundary. Moreover, assume that there is a function $F \in \mathcal{O}(\mathbb{C}^n)$ and a neighborhood U of $\mathbb{C}^n \setminus \Omega$ such that

- (1) $\operatorname{Re} F < 0$ on Ω
- (2) $F' \neq 0$ on U
- (3) putting $A_z := \{\zeta \in \mathbb{C}^n : F(\zeta) = F(z)\}$ we have that $A_z \cap \overline{\Omega}$ is compact for $z \in \overline{\Omega} \cap U$.

Then any \mathcal{C}^{∞} -smooth CR-function on $\partial\Omega$ extends to a function from class $\mathcal{O}(\Omega) \cap \mathcal{C}^{\infty}(\mathbb{C}^n)$.

We omit in this note the proof of Theorem $2 \Longrightarrow$ Theorem 1, which is elementary and will be shown in the talk.

Sketch of proof of Theorem 2. Let f be a given function and let an open set $U' \subset U$ with $\partial U' \cap \partial U = \emptyset$ satisfy the same as U. By [1, Lemma 2.2] there exists $\tilde{f} \in \mathcal{C}^{\infty}(\mathbb{C}^n)$ such that $\tilde{f}|_{\partial\Omega} = f$, supp $\tilde{f} \subset U' \cap \overline{\Omega}$ and $\omega := \overline{\partial}\tilde{f}$ vanishes to infinity order on $\partial\Omega$. If there is $u \in \mathcal{C}^{\infty}(\mathbb{C}^n)$ such that $\overline{\partial}u = \omega$ on \mathbb{C}^n and u = 0 outside Ω then $f_1 := \tilde{f} - u$ is the desired extension.

Let $g \in \mathcal{O}(\mathbb{C}^{2n}, \mathbb{C}^n)$ be defined by

$$F(\zeta) - F(z) = g(\zeta, z) \bullet (\zeta - z)$$

and let

$$A := \{ (\zeta, z) \in U \times \mathbb{C}^n : g(\zeta, z) \bullet (\zeta - z) = 0 \}.$$

TOMASZ WARSZAWSKI

Now we use the theory described in [3]. For $X, Y \subset \mathbb{C}^N$ being a real \mathcal{C}^{∞} oriented manifolds of dimensions n, m we define:

 $\mathcal{D}^p(X) :=$ set of \mathcal{C}^∞ forms on X of degree p with compact support; $\mathcal{D}(X) := \bigcup_n \mathcal{D}^p(X).$

 $\mathcal{D}^{'r}(X) :=$ set of currents on X of degree r = set of forms on X of degree r with distribution coefficients = the dual of $\mathcal{D}^{n-r}(X)$; $\mathcal{D}'(X) := \bigcup_r \mathcal{D}^{'r}(X)$.

Kernel := any element of $\mathcal{D}^{'m+r}(Y \times X)$.

With a kernel K we associate the following operator on forms on Y, denoted again by K

$$K(\varphi)(x) = \int_Y K(y, x) \wedge \varphi(y)$$

if RHS is well-defined (e.g. when φ has compact support and K is continuous).

By Theorem 5.8 there exists a \mathcal{C}^{∞} kernel $S \in \mathcal{D}'(U \times \mathbb{C}^n)$ of complex type (n, n-1) such that $\overline{\partial}S$ is the identity as the operator on forms, supp $S \subset A$ and $S(\varphi)$ is \mathcal{C}^{∞} for \mathcal{C}^{∞} form φ on U (if it is well-defined). Therefore if $u := S(\omega)$ is well-defined on \mathbb{C}^n then $\overline{\partial}u = \omega$.

We have

$$\int_{U} S(\zeta, z) \wedge \omega(\zeta) = \int_{A_z \cap \overline{\Omega} \cap U'} S(\zeta, z) \wedge \omega(\zeta).$$

If $z \in \mathbb{C}^n$ is such that there is $w \in A_z \cap \overline{\Omega} \cap U'$ then F(z) = F(w), $A_z = A_w$, so $A_z \cap \overline{\Omega} = A_w \cap \overline{\Omega}$ is compact. It follows that $A_z \cap \overline{\Omega} \cap U' \subset U$, hence the integral is well-defined.

In the opposite case (e.g. if $\operatorname{Re} F(z) > 0$) u vanishes. Recall that $\overline{\partial} u = \omega = 0$ on a domain $\mathbb{C}^n \setminus \overline{\Omega}$ (as $\partial \overline{\Omega} = \partial \Omega$ is connected) containing {Re F > 0}, so u = 0 on $\mathbb{C}^n \setminus \overline{\Omega}$ (and on $\mathbb{C}^n \setminus \Omega$).

References

- A. ANDREOTTI, C.D. HILL, E.E. Levi convexity and the Hans Lewy problem. I. Reduction to vanishing theorems, Ann. Scuola Norm. Sup. Pisa 26 (2) (1972) 325–363.
- [2] A. BOGGESS, R. DWILEWICZ, Z. SLODKOWSKI, Hartogs extension for generalized tubes in Cⁿ, J. Math. Anal. Appl. 402 (2013), 574–578.
- [3] R. HARVEY, J. POLKING, Fundamental solutions in complex analysis. I. The Cauchy-Riemann operator, Duke Math. J. 46 (2) (1979) 253–300.