AUTOMORPHISMS OF NORMAL QUASI-CIRCULAR DOMAINS

Let $m_{1}, \ldots, m_{n} \in \mathbb{N}$ be relatively prime. Recall that a domain $D \subset \mathbb{C}^{n}$ is said to be (m_{1}, \ldots, m_{n})circular (shortly quasi-circular) if

$$
\left(\lambda^{m_{1}} z_{1}, \ldots, \lambda^{m_{n}} z_{n}\right) \in D, \quad \lambda \in \mathbb{C},|\lambda|=1, \quad\left(z_{1}, \ldots, z_{n}\right) \in D .
$$

If $m_{1}=\cdots=m_{n}=1$, the domain D is called circular.
An $\left(m_{1}, \ldots, m_{n}\right)$-circular domain D is called normal, if $m_{j} \geq 2, j=1, \ldots, n$, and $\operatorname{gcd}\left(m_{j}, m_{k}\right)=1$ for any j, k such that $m_{j} \neq m_{k}$.

Recall that a bounded domain $D \subset \mathbb{C}^{n}$ is called a minimal domain with a center at $z_{0} \in D$ if $\operatorname{Vol}(G) \geq \operatorname{Vol}(D)$ for any biholomorphic mapping $\varphi: D \longrightarrow G$ with $\operatorname{det} J\left(\varphi, z_{0}\right)=1$, where

$$
J(\varphi, z):=\left[\frac{\partial \varphi_{j}}{\partial z_{k}}(z)\right]_{j, k=1, \ldots, n}
$$

is the Jacobian matrix of $\varphi=\left(\varphi_{1}, \ldots, \varphi_{n}\right)$ at $z=\left(z_{1}, \ldots, z_{n}\right) \in D$. We shall also use the following relative invariance of the Bergman kernel under the biholomorphic mapping

$$
\begin{equation*}
K_{D}(z, w)=\overline{\operatorname{det} J(\varphi, w)} K_{G}(\varphi(z), \varphi(w)) \operatorname{det} J(\varphi, z), \quad z, w \in D \tag{1}
\end{equation*}
$$

and the following characterization of the minimality:
Proposition 1 (cf. [2]). A bounded domain D is a minimal domain with the center at z_{0} iff $K_{D}\left(\cdot, z_{0}\right) \equiv$ $c \neq 0$ on D.
Proposition 2 (cf. [3]). If a bounded domain D is quasi-circular and $0 \in D$ then it is a minimal domain with the center at the origin.

Proof of Proposition 2. For $\theta \in \mathbb{R}$ define $f_{\theta}: D \longrightarrow D$ by the formula

$$
f_{\theta}\left(z_{1}, \ldots, z_{n}\right):=\left(e^{i m_{1} \theta} z_{1}, \ldots, e^{i m_{n} \theta} z_{n}\right), \quad\left(z_{1}, \ldots, z_{n}\right) \in D
$$

Observe that f_{θ} is an automorphism of D with $J\left(f_{\theta}, z\right)=\operatorname{diag}\left(e^{i m_{1} \theta}, \ldots, e^{i m_{n} \theta}\right)$. Formula (1) implies

$$
K_{D}(z, 0)=K_{D}\left(f_{\theta}(z), 0\right), \quad z \in D
$$

whence, using Taylor expansion of $K_{D}(\cdot, 0)$, we get

$$
\sum_{k=\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{Z}_{+}^{n}} a_{k} z_{1}^{k_{1}} \ldots z_{n}^{k_{n}}=\sum_{k=\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{Z}_{+}^{n}} e^{i\left(\sum_{j=1}^{n} m_{j} k_{j}\right) \theta} a_{k} z_{1}^{k_{1}} \ldots z_{n}^{k_{n}} .
$$

In particular,

$$
a_{k}=e^{i\left(\sum_{j=1}^{n} m_{j} k_{j}\right) \theta} a_{k}, \quad \theta \in \mathbb{R}, k \in \mathbb{Z}_{+}^{n} .
$$

Since $\sum_{j=1}^{n} m_{j} k_{j} \neq 0$ except for $k_{1}=\cdots=k_{n}=0$, we conclude that $a_{k}=0$ for all $k \in\left(\mathbb{Z}_{+}^{n}\right)_{*}$, i.e. $K_{D}(\cdot, 0)=$ const on D. On the other hand, $K_{D}(0,0)>0$ i.e. $K_{D}(\cdot, 0)=$ const $\neq 0$ on D.

For a bounded domain $D \subset \mathbb{C}^{n}$ and $z=\left(z_{1}, \ldots, z_{n}\right), w=\left(w_{1}, \ldots, w_{n}\right) \in D$ such that the Bergman kernel $K_{D}(z, w) \neq 0$ we define an $n \times n$ matrix

$$
T_{D}(z, w):=\left[\frac{\partial^{2}}{\partial \bar{w}_{j} \partial z_{k}} \log K_{D}(z, w)\right]_{j, k=1, \ldots, n} .
$$

$T_{D}(z, z)$ is a positive definite Hermitian matrix for all $z \in D$. Moreover, if $G \subset \mathbb{C}^{n}$ is a domain and $\varphi: D \longrightarrow G$ is a biholomorphic mapping we have

$$
\begin{equation*}
T_{D}(z, w)=\overline{{ }^{t} J(\varphi, w)} T_{G}(\varphi(z), \varphi(w)) J(\varphi, z) \tag{2}
\end{equation*}
$$

A bounded domain D is called a representative domain (in the sense of Lu Qi-Keng) if there is a point $z_{0} \in D$ such that $T_{D}\left(\cdot, z_{0}\right)=$ const on D. The point z_{0} is called the center of the representative domain D.

Proposition 3 (cf. [3]). Let D be normal quasi-circular domain with $0 \in D$. Then it is a representative domain with the center at the origin.

Proof of Proposition 3. For simplicity we shall write

$$
K_{\bar{j}, k}(z, w):=\frac{\partial^{2}}{\partial \bar{w}_{j} \partial z_{k}} \log K_{D}(z, w), \quad j, k=1, \ldots, n .
$$

By (2) for any $\theta \in \mathbb{R}$ we have

$$
\begin{equation*}
K_{\bar{j}, k}(z, 0)=e^{i\left(m_{k}-m_{j}\right) \theta} K_{\bar{j}, k}\left(f_{\theta}(z), 0\right), \quad j, k=1, \ldots, n . \tag{3}
\end{equation*}
$$

By a similar argument to the one used in the proof of Proposition 2, we know that $K_{\bar{j}, k}(\cdot, 0)=$ const on D whenever $m_{j}=m_{k}$. So fix j and k such that $m_{j} \neq m_{k}$. Without loss of generality we may assume that $m_{j}<m_{k}$.

First we prove that $K_{\bar{j}, k}(\cdot, 0)=$ const on D. Applying Taylor expansion of $K_{\bar{j}, k}(\cdot, 0)$ in (3), we get

$$
\sum_{l=\left(l_{1}, \ldots, l_{n}\right) \in \mathbb{Z}_{+}^{n}} a_{l} z_{1}^{l_{1}} \ldots z_{n}^{l_{n}}=\sum_{l=\left(l_{1}, \ldots, l_{n}\right) \in \mathbb{Z}_{+}^{n}} e^{i\left(m_{k}-m_{j}+\sum_{s=1}^{n} m_{s} l_{s}\right) \theta} a_{l} z_{1}^{l_{1}} \ldots z_{n}^{l_{n}}
$$

In particular,

$$
a_{l}=e^{i\left(m_{k}-m_{j}+\sum_{s=1}^{n} m_{s} l_{s}\right) \theta} a_{l}, \quad \theta \in \mathbb{R}, l \in \mathbb{Z}_{+}^{n}
$$

Since $m_{k}-m_{j}+\sum_{s=1}^{n} m_{s} l_{s} \geq m_{k}-m_{j}>0$ for all $\left(l_{1}, \ldots, l_{n}\right) \in \mathbb{Z}_{+}^{n}$, we conclude that $a_{l}=0$ for all $l \in \mathbb{Z}_{+}^{n}$, i.e. $K_{\bar{j}, k}(\cdot, 0)=0$ on D.

Now we prove that $K_{\bar{k}, j}(\cdot, 0)=$ const on D. Again, applying Taylor expansion of $K_{\bar{k}, j}(\cdot, 0)$ in (3), we get

$$
\sum_{l=\left(l_{1}, \ldots, l_{n}\right) \in \mathbb{Z}_{+}^{n}} a_{l} z_{1}^{l_{1}} \ldots z_{n}^{l_{n}}=\sum_{l=\left(l_{1}, \ldots, l_{n}\right) \in \mathbb{Z}_{+}^{n}} e^{i\left(m_{j}-m_{k}+\sum_{s=1}^{n} m_{s} l_{s}\right) \theta} a_{l} z_{1}^{l_{1}} \ldots z_{n}^{l_{n}} .
$$

In particular,

$$
a_{l}=e^{i\left(m_{j}-m_{k}+\sum_{s=1}^{n} m_{s} l_{s}\right) \theta} a_{l}, \quad \theta \in \mathbb{R}, l \in \mathbb{Z}_{+}^{n}
$$

Since $c_{l, m}:=m_{j}-m_{k}+\sum_{s=1}^{n} m_{s} l_{s}>0$ for all $l=\left(l_{1}, \ldots, l_{n}\right) \in \mathbb{Z}_{+}^{n}$ with $l_{k} \geq 1$, we conclude that $a_{l}=0$ for all $l \in \mathbb{Z}_{+}^{n}$ with $l_{k} \geq 1$.

It remains to show that

$$
\begin{equation*}
c_{l, m} \neq 0 \quad \text { for } l=\left(l_{1}, \ldots, l_{n}\right) \in\left(\mathbb{Z}_{+}^{n}\right)_{*} \text { such that } l_{k}=0 . \tag{4}
\end{equation*}
$$

Suppose (4) does not hold. Then

$$
\begin{equation*}
c_{l, m}=0 \quad \text { for some } l=\left(l_{1}, \ldots, l_{n}\right) \in\left(\mathbb{Z}_{+}^{n}\right)_{*} \text { with } l_{k}=0 \tag{5}
\end{equation*}
$$

If $n=2$ then the condition (5) has the form (without loss of generality we may assume that $j=1$, $k=2$)

$$
m_{1}\left(l_{1}+1\right)=m_{2}, \quad \text { for some } l_{1} \in \mathbb{Z}_{+}, l_{1} \geq 1
$$

which is impossible since, by normality, $\operatorname{gcd}\left(m_{1}, m_{2}\right)=1$. Consequently, by (4), $a_{l}=0$ for all $l \in\left(\mathbb{Z}_{+}^{n}\right)_{*}$ i.e. $K_{\bar{k}, j}(\cdot, 0)=$ const on D.

If $n \geq 3$, however, we cannot reason as above. Indeed, for $n=3, m_{1}=2, m_{2}=3, m_{3}=5$ (observe that $(2,3,5)$-circular domain is normal), $j=1, k=3$, and $l=(0,1,0) \in\left(\mathbb{Z}_{+}^{3}\right)_{*}$ we have

$$
c_{l, m}=m_{1}-m_{3}+m_{2}=2-5+3=0 .
$$

Let D be a domain and let $p \in D$. Put

$$
U_{p}^{D}:=\left\{z \in D: K_{D}(z, p) \neq 0\right\}
$$

and define a mapping $\sigma_{p}^{D}: U_{p}^{D} \longrightarrow \mathbb{C}^{n}$ by

$$
\sigma_{p}^{D}(z):=\left.T_{D}(p, p)^{-1 / 2} \operatorname{grad}_{\bar{w}} \log \frac{K_{D}(z, w)}{K_{D}(p, w)}\right|_{w=p}, \quad z \in U_{p}^{D}
$$

where $T_{D}(p, p)^{1 / 2}$ stands for the unique positive semidefinite square root of the matrix $T_{D}(p, p)$ and for anti-holomorphic function $f: D \longrightarrow \mathbb{C}$ we set

$$
\operatorname{grad}_{\bar{w}} f(w):={ }^{t}\left(\frac{\partial f}{\partial \bar{w}_{1}}(w), \ldots, \frac{\partial f}{\partial \bar{w}_{n}}(w)\right) .
$$

The mapping σ_{p}^{D} is called the Bergman mapping defined at p. One may check that

$$
\begin{gather*}
\sigma_{p}^{D}(p)=0 \tag{6}\\
J\left(\sigma_{p}^{D}, z\right)=T_{D}(p, p)^{-1 / 2} T_{D}(z, p), \quad z \in U_{p}^{D} . \tag{7}
\end{gather*}
$$

Indeed, to see (7) note that

$$
J\left(\sigma_{p}^{D}, z\right)=T_{D}(p, p)^{-1 / 2} J\left(\left.\operatorname{grad}_{\bar{w}} \log \frac{K_{D}(\cdot, w)}{K_{D}(p, w)}\right|_{w=p}, z\right), \quad z \in U_{p}^{D}
$$

and

$$
\frac{\partial}{\partial z_{k}}\left(\left.\frac{\partial}{\partial \bar{w}_{j}} \log \frac{K_{D}(z, w)}{K_{D}(p, w)}\right|_{w=p}\right)=\left.\frac{\partial^{2}}{\partial \bar{w}_{j} \partial z_{k}} \log \frac{K_{D}(z, w)}{K_{D}(p, w)}\right|_{w=p}, \quad z \in U_{p}^{D}, j, k=1, \ldots, n .
$$

For a domain G and a biholomorphic mapping $\varphi: D \longrightarrow G$ we define an $n \times n$ matrix

$$
L(\varphi, p):=T_{G}(\varphi(p), \varphi(p))^{-1 / 2} \bar{t} J(\varphi, p)^{-1} T_{D}(p, p)^{1 / 2} .
$$

Proposition 4 (cf. [1]). Let D, G be domains, $p \in D$, and let $f: D \longrightarrow G$ be a biholomorphic mapping. Then the diagram

commutes.
Proof of Proposition 3.3. Note that if $z \in U_{p}^{D}$, i.e. $K_{D}(z, p) \neq 0$ then, by $(1), K_{G}(f(z), f(p)) \neq 0$, i.e. $f(z) \in U_{f(p)}^{G}$. In particular, $f\left(U_{p}^{D}\right) \subset U_{f(p)}^{G}$.

For $z \in U_{p}^{D}$ by (1) we have

$$
\frac{K_{D}(z, w)}{K_{D}(p, w)}=\frac{K_{G}(f(z), f(w)) \operatorname{det} J(f, z)}{K_{G}(f(p), f(w)) \operatorname{det} J(f, p)},
$$

whence it follows that

$$
\left.\operatorname{grad}_{\bar{w}} \log \frac{K_{D}(z, w)}{K_{D}(p, w)}\right|_{w=p}=\left.\operatorname{grad}_{\bar{w}} \log \frac{K_{G}(f(z), f(w))}{K_{G}(f(p), f(w))}\right|_{w=p} .
$$

Using the change of variable $\xi:=f(w)$ the right-hand side may be rewritten as

$$
\left.\overline{{ }^{t} J(f, p)} \operatorname{grad}_{\bar{\xi}} \log \frac{K_{G}(f(z), \xi)}{K_{G}(f(p), \xi)}\right|_{\xi=f(p)} .
$$

Consequently,

$$
L(f, p) \sigma_{p}^{D}(z)=\left.L(f, p) T_{D}(p, p)^{-1 / 2 \bar{t} J(f, p)} \operatorname{grad}_{\bar{\xi}} \log \frac{K_{G}(f(z), \xi)}{K_{G}(f(p), \xi)}\right|_{\xi=f(p)}=\sigma_{f(p)}^{G}(f(z))
$$

which ends the proof.

References

[1] H. Ishi, C. Kai, The representative domain of a homogeneous bounded domain, Kyushu J. Math. 64 (2010), 35-47.
[2] M. Maschler, Minimal domains and their Bergman kernel function, Pacific J. Math. 6 (1956), 501-516.
[3] A. Yamamori, Automorphisms of normal quasi-circular domains, Bull. Sci. Math (2013), http://dx.doi.org/10.1016/j.bulsci.2013.10.002.

[^0]
[^0]: ${ }^{1}$ Indeed, if $F(\lambda):=\log \left(K_{G}(f(z), \lambda) / K_{G}(f(p), \lambda)\right), \lambda \in G$, then
 $\left.{ }^{t} J(f, p) \operatorname{grad}_{\bar{\xi}} F(\xi)\right|_{\xi=f(p)}={ }^{t}\left(\left.\operatorname{grad}_{\bar{\xi}} F(\xi)\right|_{\xi=f(p)} \overline{J(f, p)}\right)$

 $$
 ={ }^{t}\left(\left[\begin{array}{lll}
 \frac{\partial F}{\partial \bar{\xi}_{1}}(f(p)) & \ldots & \frac{\partial F}{\partial \bar{\xi}_{n}}(f(p))
 \end{array}\right] \cdot\left[\frac{\partial \bar{f}_{j}}{\partial \bar{z}_{k}}(p)\right]_{j, k=1, \ldots, n}\right)={ }^{t}\left[\begin{array}{lll}
 \sum_{j=1}^{n} \frac{\partial F}{\partial \bar{\xi}_{j}}(f(p)) \frac{\partial \bar{f}_{j}}{\partial \bar{z}_{1}}(p) & \ldots & \sum_{j=1}^{n} \frac{\partial F}{\partial \bar{\xi}_{j}}(f(p)) \frac{\partial \bar{f}_{j}}{\partial \bar{z}_{n}}(p)
 \end{array}\right]
 $$

 $$
 =t\left[\begin{array}{lll}
 \frac{\partial(F \circ \bar{f})}{\partial \bar{z}_{1}}(p) & \ldots & \left.\frac{\partial(F \circ \bar{f})}{\partial \bar{z}_{n}}(p)\right]={ }^{t}\left(\left.\operatorname{grad}_{\bar{w}} F(f(w))\right|_{w=p}\right) .
 \end{array}\right.
 $$

