
AUTOMORPHISMS OF NORMAL QUASI-CIRCULAR DOMAINS

Let m1, . . . ,mn ∈ N be relatively prime. Recall that a domain D ⊂ Cn is said to be (m1, . . . ,mn)-
circular (shortly quasi-circular) if

(λm1z1, . . . , λ
mnzn) ∈ D, λ ∈ C, |λ| = 1, (z1, . . . , zn) ∈ D.

If m1 = · · · = mn = 1, the domain D is called circular.
An (m1, . . . ,mn)-circular domain D is called normal, if mj ≥ 2, j = 1, . . . , n, and gcd(mj ,mk) = 1

for any j, k such that mj 6= mk.
Recall that a bounded domain D ⊂ Cn is called a minimal domain with a center at z0 ∈ D if

Vol(G) ≥ Vol(D) for any biholomorphic mapping ϕ : D −→ G with det J(ϕ, z0) = 1, where

J(ϕ, z) :=

[
∂ϕj
∂zk

(z)

]
j,k=1,...,n

is the Jacobian matrix of ϕ = (ϕ1, . . . , ϕn) at z = (z1, . . . , zn) ∈ D. We shall also use the following
relative invariance of the Bergman kernel under the biholomorphic mapping

(1) KD(z, w) = det J(ϕ,w)KG(ϕ(z), ϕ(w)) det J(ϕ, z), z, w ∈ D,

and the following characterization of the minimality:

Proposition 1 (cf. [2]). A bounded domain D is a minimal domain with the center at z0 iff KD(·, z0) ≡
c 6= 0 on D.

Proposition 2 (cf. [3]). If a bounded domain D is quasi-circular and 0 ∈ D then it is a minimal domain
with the center at the origin.

Proof of Proposition 2. For θ ∈ R define fθ : D −→ D by the formula

fθ(z1, . . . , zn) := (eim1θz1, . . . , e
imnθzn), (z1, . . . , zn) ∈ D.

Observe that fθ is an automorphism of D with J(fθ, z) = diag(eim1θ, . . . , eimnθ). Formula (1) implies

KD(z, 0) = KD(fθ(z), 0), z ∈ D,

whence, using Taylor expansion of KD(·, 0), we get∑
k=(k1,...,kn)∈Zn

+

akz
k1
1 . . . zknn =

∑
k=(k1,...,kn)∈Zn

+

ei(
∑n

j=1mjkj)θakz
k1
1 . . . zknn .

In particular,

ak = ei(
∑n

j=1mjkj)θak, θ ∈ R, k ∈ Zn+.
Since

∑n
j=1mjkj 6= 0 except for k1 = · · · = kn = 0, we conclude that ak = 0 for all k ∈ (Zn+)∗,

i.e. KD(·, 0) = const on D. On the other hand, KD(0, 0) > 0 i.e. KD(·, 0) = const 6= 0 on D. �

For a bounded domain D ⊂ Cn and z = (z1, . . . , zn), w = (w1, . . . , wn) ∈ D such that the Bergman
kernel KD(z, w) 6= 0 we define an n× n matrix

TD(z, w) :=

[
∂2

∂w̄j∂zk
logKD(z, w)

]
j,k=1,...,n

.

TD(z, z) is a positive definite Hermitian matrix for all z ∈ D. Moreover, if G ⊂ Cn is a domain and
ϕ : D −→ G is a biholomorphic mapping we have

(2) TD(z, w) = tJ(ϕ,w)TG(ϕ(z), ϕ(w))J(ϕ, z).

A bounded domain D is called a representative domain (in the sense of Lu Qi-Keng) if there is a
point z0 ∈ D such that TD(·, z0) = const on D. The point z0 is called the center of the representative
domain D.

Proposition 3 (cf. [3]). Let D be normal quasi-circular domain with 0 ∈ D. Then it is a representative
domain with the center at the origin.
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Proof of Proposition 3. For simplicity we shall write

Kj̄,k(z, w) :=
∂2

∂w̄j∂zk
logKD(z, w), j, k = 1, . . . , n.

By (2) for any θ ∈ R we have

(3) Kj̄,k(z, 0) = ei(mk−mj)θKj̄,k(fθ(z), 0), j, k = 1, . . . , n.

By a similar argument to the one used in the proof of Proposition 2, we know that Kj̄,k(·, 0) = const on
D whenever mj = mk. So fix j and k such that mj 6= mk. Without loss of generality we may assume
that mj < mk.

First we prove that Kj̄,k(·, 0) = const on D. Applying Taylor expansion of Kj̄,k(·, 0) in (3), we get∑
l=(l1,...,ln)∈Zn

+

alz
l1
1 . . . zlnn =

∑
l=(l1,...,ln)∈Zn

+

ei(mk−mj+
∑n

s=1msls)θalz
l1
1 . . . zlnn .

In particular,

al = ei(mk−mj+
∑n

s=1msls)θal, θ ∈ R, l ∈ Zn+.
Since mk −mj +

∑n
s=1msls ≥ mk −mj > 0 for all (l1, . . . , ln) ∈ Zn+, we conclude that al = 0 for all

l ∈ Zn+, i.e. Kj̄,k(·, 0) = 0 on D.
Now we prove that Kk̄,j(·, 0) = const on D. Again, applying Taylor expansion of Kk̄,j(·, 0) in (3), we

get ∑
l=(l1,...,ln)∈Zn

+

alz
l1
1 . . . zlnn =

∑
l=(l1,...,ln)∈Zn

+

ei(mj−mk+
∑n

s=1msls)θalz
l1
1 . . . zlnn .

In particular,

al = ei(mj−mk+
∑n

s=1msls)θal, θ ∈ R, l ∈ Zn+.
Since cl,m := mj −mk +

∑n
s=1msls > 0 for all l = (l1, . . . , ln) ∈ Zn+ with lk ≥ 1, we conclude that al = 0

for all l ∈ Zn+ with lk ≥ 1.
It remains to show that

(4) cl,m 6= 0 for l = (l1, . . . , ln) ∈ (Zn+)∗ such that lk = 0.

Suppose (4) does not hold. Then

(5) cl,m = 0 for some l = (l1, . . . , ln) ∈ (Zn+)∗ with lk = 0.

If n = 2 then the condition (5) has the form (without loss of generality we may assume that j = 1,
k = 2)

m1(l1 + 1) = m2, for some l1 ∈ Z+, l1 ≥ 1,

which is impossible since, by normality, gcd(m1,m2) = 1. Consequently, by (4), al = 0 for all l ∈ (Zn+)∗
i.e. Kk̄,j(·, 0) = const on D.

If n ≥ 3, however, we cannot reason as above. Indeed, for n = 3, m1 = 2, m2 = 3, m3 = 5 (observe
that (2, 3, 5)-circular domain is normal), j = 1, k = 3, and l = (0, 1, 0) ∈ (Z3

+)∗ we have

cl,m = m1 −m3 +m2 = 2− 5 + 3 = 0.

�

Let D be a domain and let p ∈ D. Put

UDp := {z ∈ D : KD(z, p) 6= 0}

and define a mapping σDp : UDp −→ Cn by

σDp (z) := TD(p, p)−1/2 gradw̄ log
KD(z, w)

KD(p, w)

∣∣∣∣
w=p

, z ∈ UDp ,

where TD(p, p)1/2 stands for the unique positive semidefinite square root of the matrix TD(p, p) and for
anti-holomorphic function f : D −→ C we set

gradw̄ f(w) := t

(
∂f

∂w̄1
(w), . . . ,

∂f

∂w̄n
(w)

)
.
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The mapping σDp is called the Bergman mapping defined at p. One may check that

σDp (p) = 0,(6)

J(σDp , z) = TD(p, p)−1/2TD(z, p), z ∈ UDp .(7)

Indeed, to see (7) note that

J(σDp , z) = TD(p, p)−1/2J

(
gradw̄ log

KD(·, w)

KD(p, w)

∣∣∣∣
w=p

, z

)
, z ∈ UDp ,

and

∂

∂zk

(
∂

∂w̄j
log

KD(z, w)

KD(p, w)

∣∣∣∣
w=p

)
=

∂2

∂w̄j∂zk
log

KD(z, w)

KD(p, w)

∣∣∣∣
w=p

, z ∈ UDp , j, k = 1, . . . , n.

For a domain G and a biholomorphic mapping ϕ : D −→ G we define an n× n matrix

L(ϕ, p) := TG(ϕ(p), ϕ(p))−1/2tJ(ϕ, p)−1TD(p, p)1/2.

Proposition 4 (cf. [1]). Let D,G be domains, p ∈ D, and let f : D −→ G be a biholomorphic mapping.
Then the diagram

UDp

f |UD
p−−−−→ UGf(p)

σD
p

y yσG
f(p)

Cn L(f,p)−−−−→ Cn
commutes.

Proof of Proposition 3.3. Note that if z ∈ UDp , i.e. KD(z, p) 6= 0 then, by (1), KG(f(z), f(p)) 6= 0,

i.e. f(z) ∈ UGf(p). In particular, f(UDp ) ⊂ UGf(p).

For z ∈ UDp by (1) we have

KD(z, w)

KD(p, w)
=
KG(f(z), f(w)) det J(f, z)

KG(f(p), f(w)) det J(f, p)
,

whence it follows that

gradw̄ log
KD(z, w)

KD(p, w)

∣∣∣∣
w=p

= gradw̄ log
KG(f(z), f(w))

KG(f(p), f(w))

∣∣∣∣
w=p

.

Using the change of variable ξ := f(w) the right-hand side may be rewritten as

tJ(f, p) gradξ̄ log
KG(f(z), ξ)

KG(f(p), ξ)

∣∣∣∣
ξ=f(p)

.1

Consequently,

L(f, p)σDp (z) = L(f, p)TD(p, p)−1/2tJ(f, p) gradξ̄ log
KG(f(z), ξ)

KG(f(p), ξ)

∣∣∣∣
ξ=f(p)

= σGf(p)(f(z)),

which ends the proof. �

References

[1] H. Ishi, C. Kai, The representative domain of a homogeneous bounded domain, Kyushu J. Math. 64 (2010), 35–47.

[2] M. Maschler, Minimal domains and their Bergman kernel function, Pacific J. Math. 6 (1956), 501–516.
[3] A. Yamamori, Automorphisms of normal quasi-circular domains, Bull. Sci. Math (2013), http://dx.doi.org/10.-

1016/j.bulsci.2013.10.002.

1Indeed, if F (λ) := log(KG(f(z), λ)/KG(f(p), λ)), λ ∈ G, then

tJ(f, p) gradξ̄ F (ξ)|ξ=f(p) = t
(

gradξ̄ F (ξ)|ξ=f(p) J(f, p)
)

= t

([
∂F
∂ξ̄1

(f(p)) . . . ∂F
∂ξ̄n

(f(p))
]
·
[
∂f̄j
∂z̄k

(p)
]
j,k=1,...,n

)
= t

[∑n
j=1

∂F
∂ξ̄j

(f(p))
∂f̄j
∂z̄1

(p) . . .
∑n
j=1

∂F
∂ξ̄j

(f(p))
∂f̄j
∂z̄n

(p)
]

= t
[
∂(F◦f̄)
∂z̄1

(p) . . .
∂(F◦f̄)
∂z̄n

(p)
]

= t( gradw̄ F (f(w))|w=p).
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