AUTOMORPHISMS OF NORMAL QUASI-CIRCULAR DOMAINS

Let $m_1, \ldots, m_n \in \mathbb{N}$ be relatively prime. Recall that a domain $D \subset \mathbb{C}^n$ is said to be (m_1, \ldots, m_n) circular (shortly quasi-circular) if

$$(\lambda^{m_1}z_1,\ldots,\lambda^{m_n}z_n)\in D, \quad \lambda\in\mathbb{C}, \ |\lambda|=1, \quad (z_1,\ldots,z_n)\in D.$$

If $m_1 = \cdots = m_n = 1$, the domain D is called *circular*.

An (m_1, \ldots, m_n) -circular domain D is called *normal*, if $m_j \ge 2$, $j = 1, \ldots, n$, and $gcd(m_j, m_k) = 1$ for any j, k such that $m_j \ne m_k$.

Recall that a bounded domain $D \subset \mathbb{C}^n$ is called a *minimal domain with a center at* $z_0 \in D$ if $Vol(G) \geq Vol(D)$ for any biholomorphic mapping $\varphi : D \longrightarrow G$ with det $J(\varphi, z_0) = 1$, where

$$J(\varphi,z) := \left[\frac{\partial \varphi_j}{\partial z_k}(z)\right]_{j,k=1,\ldots,n}$$

is the Jacobian matrix of $\varphi = (\varphi_1, \ldots, \varphi_n)$ at $z = (z_1, \ldots, z_n) \in D$. We shall also use the following relative invariance of the Bergman kernel under the biholomorphic mapping

(1) $K_D(z,w) = \overline{\det J(\varphi,w)} K_G(\varphi(z),\varphi(w)) \det J(\varphi,z), \quad z,w \in D,$

and the following characterization of the minimality:

Proposition 1 (cf. [2]). A bounded domain D is a minimal domain with the center at z_0 iff $K_D(\cdot, z_0) \equiv c \neq 0$ on D.

Proposition 2 (cf. [3]). If a bounded domain D is quasi-circular and $0 \in D$ then it is a minimal domain with the center at the origin.

Proof of Proposition 2. For $\theta \in \mathbb{R}$ define $f_{\theta} : D \longrightarrow D$ by the formula

$$f_{\theta}(z_1,\ldots,z_n) := (e^{im_1\theta}z_1,\ldots,e^{im_n\theta}z_n), \quad (z_1,\ldots,z_n) \in D.$$

Observe that f_{θ} is an automorphism of D with $J(f_{\theta}, z) = \text{diag}(e^{im_1\theta}, \dots, e^{im_n\theta})$. Formula (1) implies

$$K_D(z,0) = K_D(f_\theta(z),0), \quad z \in D,$$

whence, using Taylor expansion of $K_D(\cdot, 0)$, we get

$$\sum_{k=(k_1,\dots,k_n)\in\mathbb{Z}_+^n} a_k z_1^{k_1}\dots z_n^{k_n} = \sum_{k=(k_1,\dots,k_n)\in\mathbb{Z}_+^n} e^{i(\sum_{j=1}^n m_j k_j)\theta} a_k z_1^{k_1}\dots z_n^{k_n}.$$

In particular,

$$a_k = e^{i(\sum_{j=1}^n m_j k_j)\theta} a_k, \quad \theta \in \mathbb{R}, \ k \in \mathbb{Z}_+^n$$

Since $\sum_{j=1}^{n} m_j k_j \neq 0$ except for $k_1 = \cdots = k_n = 0$, we conclude that $a_k = 0$ for all $k \in (\mathbb{Z}_+^n)_*$, i.e. $K_D(\cdot, 0) = \text{const}$ on D. On the other hand, $K_D(0, 0) > 0$ i.e. $K_D(\cdot, 0) = \text{const} \neq 0$ on D.

For a bounded domain $D \subset \mathbb{C}^n$ and $z = (z_1, \ldots, z_n), w = (w_1, \ldots, w_n) \in D$ such that the Bergman kernel $K_D(z, w) \neq 0$ we define an $n \times n$ matrix

$$T_D(z,w) := \left[\frac{\partial^2}{\partial \bar{w}_j \partial z_k} \log K_D(z,w)\right]_{j,k=1,\dots,n}$$

 $T_D(z, z)$ is a positive definite Hermitian matrix for all $z \in D$. Moreover, if $G \subset \mathbb{C}^n$ is a domain and $\varphi: D \longrightarrow G$ is a biholomorphic mapping we have

(2)
$$T_D(z,w) = \overline{{}^t J(\varphi,w)} T_G(\varphi(z),\varphi(w)) J(\varphi,z).$$

A bounded domain D is called a representative domain (in the sense of Lu Qi-Keng) if there is a point $z_0 \in D$ such that $T_D(\cdot, z_0) = \text{const}$ on D. The point z_0 is called the center of the representative domain D.

Proposition 3 (cf. [3]). Let D be normal quasi-circular domain with $0 \in D$. Then it is a representative domain with the center at the origin.

Proof of Proposition 3. For simplicity we shall write

$$K_{\bar{j},k}(z,w) := \frac{\partial^2}{\partial \bar{w}_j \partial z_k} \log K_D(z,w), \quad j,k = 1, \dots, n.$$

By (2) for any $\theta \in \mathbb{R}$ we have

(3)
$$K_{\bar{j},k}(z,0) = e^{i(m_k - m_j)\theta} K_{\bar{j},k}(f_{\theta}(z),0), \quad j,k = 1,\dots, n.$$

By a similar argument to the one used in the proof of Proposition 2, we know that $K_{\bar{j},k}(\cdot, 0) = \text{const}$ on D whenever $m_j = m_k$. So fix j and k such that $m_j \neq m_k$. Without loss of generality we may assume that $m_j < m_k$.

First we prove that $K_{\overline{j},k}(\cdot,0) = \text{const}$ on D. Applying Taylor expansion of $K_{\overline{j},k}(\cdot,0)$ in (3), we get

$$\sum_{l=(l_1,\dots,l_n)\in\mathbb{Z}_+^n} a_l z_1^{l_1}\dots z_n^{l_n} = \sum_{l=(l_1,\dots,l_n)\in\mathbb{Z}_+^n} e^{i(m_k-m_j+\sum_{s=1}^n m_s l_s)\theta} a_l z_1^{l_1}\dots z_n^{l_n}.$$

In particular,

 $a_l = e^{i(m_k - m_j + \sum_{s=1}^n m_s l_s)\theta} a_l, \quad \theta \in \mathbb{R}, \ l \in \mathbb{Z}_+^n.$

Since $m_k - m_j + \sum_{s=1}^n m_s l_s \ge m_k - m_j > 0$ for all $(l_1, \ldots, l_n) \in \mathbb{Z}_+^n$, we conclude that $a_l = 0$ for all $l \in \mathbb{Z}_+^n$, i.e. $K_{j,k}(\cdot, 0) = 0$ on D.

Now we prove that $K_{\bar{k},j}(\cdot,0) = \text{const}$ on D. Again, applying Taylor expansion of $K_{\bar{k},j}(\cdot,0)$ in (3), we get

$$\sum_{l=(l_1,\ldots,l_n)\in\mathbb{Z}_+^n} a_l z_1^{l_1}\ldots z_n^{l_n} = \sum_{l=(l_1,\ldots,l_n)\in\mathbb{Z}_+^n} e^{i(m_j-m_k+\sum_{s=1}^n m_s l_s)\theta} a_l z_1^{l_1}\ldots z_n^{l_n}.$$

In particular,

(4)

$$a_l = e^{i(m_j - m_k + \sum_{s=1}^n m_s l_s)\theta} a_l, \quad \theta \in \mathbb{R}, \ l \in \mathbb{Z}_+^n$$

Since $c_{l,m} := m_j - m_k + \sum_{s=1}^n m_s l_s > 0$ for all $l = (l_1, \ldots, l_n) \in \mathbb{Z}_+^n$ with $l_k \ge 1$, we conclude that $a_l = 0$ for all $l \in \mathbb{Z}_+^n$ with $l_k \ge 1$.

It remains to show that

$$c_{l,m} \neq 0$$
 for $l = (l_1, \ldots, l_n) \in (\mathbb{Z}^n_+)_*$ such that $l_k = 0$.

Suppose (4) does not hold. Then

(5)
$$c_{l,m} = 0 \quad \text{for some } l = (l_1, \dots, l_n) \in (\mathbb{Z}_+^n)_* \text{ with } l_k = 0$$

If n = 2 then the condition (5) has the form (without loss of generality we may assume that j = 1, k = 2)

$$m_1(l_1+1) = m_2$$
, for some $l_1 \in \mathbb{Z}_+, \ l_1 \ge 1$

which is impossible since, by normality, $gcd(m_1, m_2) = 1$. Consequently, by (4), $a_l = 0$ for all $l \in (\mathbb{Z}^n_+)_*$ i.e. $K_{\bar{k}, i}(\cdot, 0) = \text{const on } D$.

If $n \ge 3$, however, we cannot reason as above. Indeed, for n = 3, $m_1 = 2$, $m_2 = 3$, $m_3 = 5$ (observe that (2,3,5)-circular domain is normal), j = 1, k = 3, and $l = (0,1,0) \in (\mathbb{Z}^3_+)_*$ we have

$$c_{l,m} = m_1 - m_3 + m_2 = 2 - 5 + 3 = 0.$$

Let D be a domain and let $p \in D$. Put

$$U_p^D := \{ z \in D : K_D(z, p) \neq 0 \}$$

and define a mapping $\sigma_p^D: U_p^D \longrightarrow \mathbb{C}^n$ by

$$\sigma_p^D(z) := T_D(p, p)^{-1/2} \operatorname{grad}_{\bar{w}} \log \frac{K_D(z, w)}{K_D(p, w)} \Big|_{w=p}, \quad z \in U_p^D,$$

where $T_D(p,p)^{1/2}$ stands for the unique positive semidefinite square root of the matrix $T_D(p,p)$ and for anti-holomorphic function $f: D \longrightarrow \mathbb{C}$ we set

$$\operatorname{grad}_{\bar{w}} f(w) := {}^t \left(\frac{\partial f}{\partial \bar{w}_1}(w), \dots, \frac{\partial f}{\partial \bar{w}_n}(w) \right).$$

The mapping σ_p^D is called the *Bergman mapping defined at p*. One may check that

(6)
$$\sigma_p^D(p) = 0,$$

(7)
$$J(\sigma_p^D, z) = T_D(p, p)^{-1/2} T_D(z, p), \quad z \in U_p^D.$$

Indeed, to see (7) note that

$$J(\sigma_p^D, z) = T_D(p, p)^{-1/2} J\left(\left. \operatorname{grad}_{\bar{w}} \log \frac{K_D(\cdot, w)}{K_D(p, w)} \right|_{w=p}, z \right), \quad z \in U_p^D$$

and

$$\frac{\partial}{\partial z_k} \left(\frac{\partial}{\partial \bar{w}_j} \log \frac{K_D(z, w)}{K_D(p, w)} \Big|_{w=p} \right) = \frac{\partial^2}{\partial \bar{w}_j \partial z_k} \log \frac{K_D(z, w)}{K_D(p, w)} \Big|_{w=p}, \quad z \in U_p^D, \ j, k = 1, \dots, n.$$

For a domain G and a biholomorphic mapping $\varphi: D \longrightarrow G$ we define an $n \times n$ matrix

$$L(\varphi, p) := T_G(\varphi(p), \varphi(p))^{-1/2} \overline{I_J(\varphi, p)^{-1}} T_D(p, p)^{1/2}$$

Proposition 4 (cf. [1]). Let D, G be domains, $p \in D$, and let $f : D \longrightarrow G$ be a biholomorphic mapping. Then the diagram

$$\begin{array}{ccc} U^D_p & \stackrel{f|_{U^D_p}}{\longrightarrow} & U^G_{f(p)} \\ \sigma^D_p & & & & \downarrow \sigma^G_{f(p)} \\ \mathbb{C}^n & \stackrel{L(f,p)}{\longrightarrow} & \mathbb{C}^n \end{array}$$

commutes.

Proof of Proposition 3.3. Note that if $z \in U_p^D$, i.e. $K_D(z,p) \neq 0$ then, by (1), $K_G(f(z), f(p)) \neq 0$, i.e. $f(z) \in U_{f(p)}^G$. In particular, $f(U_p^D) \subset U_{f(p)}^G$. For $z \in U_p^D$ by (1) we have

$$\frac{K_D(z,w)}{K_D(p,w)} = \frac{K_G(f(z), f(w)) \det J(f,z)}{K_G(f(p), f(w)) \det J(f,p)},$$

whence it follows that

$$\left.\operatorname{grad}_{\bar{w}}\log\left.\frac{K_D(z,w)}{K_D(p,w)}\right|_{w=p} = \operatorname{grad}_{\bar{w}}\log\left.\frac{K_G(f(z),f(w))}{K_G(f(p),f(w))}\right|_{w=p}.$$

Using the change of variable $\xi := f(w)$ the right-hand side may be rewritten as

$$\overline{{}^{t}J(f,p)} \operatorname{grad}_{\bar{\xi}} \log \left. \frac{K_G(f(z),\xi)}{K_G(f(p),\xi)} \right|_{\xi=f(p)} .^1$$

Consequently,

$$L(f,p)\sigma_p^D(z) = L(f,p)T_D(p,p)^{-1/2t}\overline{J(f,p)} \operatorname{grad}_{\bar{\xi}} \log \left. \frac{K_G(f(z),\xi)}{K_G(f(p),\xi)} \right|_{\xi=f(p)} = \sigma_{f(p)}^G(f(z)),$$

which ends the proof.

References

- [1] H. Ishi, C. Kai, The representative domain of a homogeneous bounded domain, Kyushu J. Math. 64 (2010), 35-47.
- [2] M. Maschler, Minimal domains and their Bergman kernel function, Pacific J. Math. 6 (1956), 501–516.
- [3] A. Yamamori, Automorphisms of normal quasi-circular domains, Bull. Sci. Math (2013), http://dx.doi.org/10.-1016/j.bulsci.2013.10.002.

¹Indeed, if
$$F(\lambda) := \log(K_G(f(z), \lambda)/K_G(f(p), \lambda)), \lambda \in G$$
, then

$$\overline{{}^t J(f, p)} \operatorname{grad}_{\bar{\xi}} F(\xi)|_{\xi=f(p)} = {}^t \left(\operatorname{grad}_{\bar{\xi}} F(\xi)|_{\xi=f(p)} \overline{J(f, p)} \right)$$

$$= {}^t \left(\left[\frac{\partial F}{\partial \xi_1}(f(p)) & \dots & \frac{\partial F}{\partial \xi_n}(f(p)) \right] \cdot \left[\frac{\partial \bar{f}_j}{\partial \bar{z}_k}(p) \right]_{j,k=1,\dots,n} \right) = {}^t \left[\sum_{j=1}^n \frac{\partial F}{\partial \xi_j}(f(p)) \frac{\partial \bar{f}_j}{\partial \bar{z}_1}(p) & \dots & \sum_{j=1}^n \frac{\partial F}{\partial \xi_j}(f(p)) \frac{\partial \bar{f}_j}{\partial \bar{z}_n}(p) \right]$$

$$= {}^t \left[\frac{\partial (F \circ \bar{f})}{\partial \bar{z}_1}(p) & \dots & \frac{\partial (F \circ \bar{f})}{\partial \bar{z}_n}(p) \right] = {}^t (\operatorname{grad}_{\bar{w}} F(f(w))|_{w=p}).$$