Worm domain

Kamil Drzyzga

April 2014

Definition 1 Suppose that:

$$\overline{\Omega} = \cap W_i,$$

where

$$W_1 \supseteq W_2 \supseteq \ldots \supseteq \ldots \overline{\Omega}$$

 W_j are smoothly bounded, pseudoconvex domains and Ω is pseudoconvex. A domain having this property is said to have a Stein neghborhood basis.

Definition 2 (Worm domain) Let W denote domain:

$$\mathcal{W} := \{ (z_1, z_2) \in \mathbb{C}^2 : |z_1 - e^{i \log |z_2|^2}|^2 < 1 - \eta (\log |z_2|^2) \}$$

where

- 1. $\eta \ge 0, \eta$ is even, η is convex
- 2. $\eta^{-1}(0) = [-\mu, \mu]$
- 3. There exists a number a > 0 such that $\eta(x) > 1$ if |x| > a.

4. $\eta'(x) \neq 0$ if $\eta(x) = 1$.

Definition 3 We say λ is a bounded plurisubharmonic exhaustion function for a domain Ω if:

- λ is continuous on $\overline{\Omega}$
- λ is strictly plurisubharmonic on Ω
- $\lambda = 0$ on $\partial \Omega$
- $\lambda < 0$ on Ω
- For any c < 0, the set

$$\Omega_c := \{ z \in \Omega : \lambda(z) < c \} \Subset \Omega$$

Proposition 1 The domain W is smoothly bounded and pseudoconvex.

Proposition 2 The smooth worm domian W has not a Stein neighborhood basis.

Proposition 3 There exists no defining function $\tilde{\varrho}$ for W that is plurisubharmonic on the entire boundary.

Proposition 4 Let $\delta_0 > 0$ be fixed. Then there exists $\mu_0 > 0$ such that, for all $\mu \ge \mu_0$, the following holds. If $\tilde{\varrho}$ is a defining function for $W = W_{\mu}$ with $\mu \ge \mu_0$ and $\delta > 0$ is such that $-(-\tilde{\varrho})^{\delta}$ is a bounded plurisubharmonic exhaustion function for W, then $\delta < \delta_0$