Cantor Boundary Behavior of Analytic Functions

Xin-Han Dong, Ka-Sing Lau

Proposition 1 Let Ω be a bounded simply connected domain. Let f be a nonconstant analytic function in Ω and continuous on $\overline{\Omega}$. Suppose $\mathbb{C}_{\infty} \setminus f(\partial \Omega) = \bigcup_{j \ge 0} \mathbb{W}_j$ is the unique decomposition into components. Then:

(i) Each \mathbb{W}_i is a simply connected domain.

(ii) $f^{-1}(f(\partial \Omega))$ is connected and each component of $\Omega \setminus f^{-1}(f(\partial \Omega))$ is a simply connected domain

Let $n_f(w; K)$ denote the number of roots $z \in K$ for equation f(z) = w, counting according to multiplicity.

Proposition 2 With the above assumption, suppose that $\mathbb{W}_j \cap f(\Omega) \neq \emptyset$. Let $f^{-1}(\mathbb{W}_j) = \bigcup_{k=1}^{q_j} O_j^k$ be the decomposition of the open set $f^{-1}(\mathbb{W}_j)$ into components. Then $1 \leq q_j < +\infty$; each O_j^k is a simply connected component of $\Omega \setminus f^{-1}(f(\partial \Omega))$ and

$$f(O_j^k) = \mathbb{W}_j, \ f(\partial O_j^k) = \partial \mathbb{W}_j$$

Moreover, for each $w \in W_j$, $n_f(w; O_j^k) \equiv n_{j,k}$ and $\sum_{k=1}^{q_j} n_{j,k} \equiv n_f(w, \Omega)$. If, in addition $\partial\Omega$ is locally connected, then all the ∂W_j and ∂O_j^k are locally connected.

Proposition 3 With the above assumption and notation, f' has $n_{j,k} - 1$ zeros in O_j^k

The proof depends on the following lemma and the Riemann mapping theorem.

Lemma 1 Let f be analytic in \mathbb{D} with $f(\mathbb{D}) = \mathbb{D}$. Suppose $n_f(w; \mathbb{D}) \equiv k$ for all $w \in \mathbb{D}$ for all $w \in \mathbb{D}$; then f is a finite Blaschke product of degree k, and f'(z) has k - 1 zeros in \mathbb{D} .

Proposition 4 Let f be a Blaschke product of degree k and let Z be a set of zeros of f' in \mathbb{D}_z . Suppose $f(Z) \subset L$ where L is a Jordan curve in \mathbb{D}_w except for an end point $\xi_0 \in \partial \mathbb{D}_w$. Let $G = \mathbb{D}_w \setminus L$ (it is simply connected), and let $f^{-1}(G) = \bigcup_{j=1}^d O_j$ be the connected component decomposition as in Proposition 2. Then d = k, and f is univalent in O_j with $f(O_j) = G$.

Definition 1 Let f be analytic in \mathbb{D} and continuous on $\overline{\mathbb{D}}$. We say that f has the Cantor boundry behaviour if $f^{-1}(\partial f(\mathbb{D}))$ and $\partial O \cap \partial \mathbb{D}$ are Cantor type sets in $\partial \mathbb{D}$ (whenever it is nonempty) where O is any simply connected component of $\mathbb{D}\setminus f^{-1}(f(\partial \mathbb{D}))$ (as in Proposition 1).

Lemma 2 Let f be analytic in \mathbb{D} and continuous on $\overline{\mathbb{D}}$. If there is a non-degenerated arc $J \subset \partial \mathbb{D}$ such that $f(J) \subset \partial f(\mathbb{D})$, then there exists a non-degenerated subarc $I \subset J$ and a bounded simply connected domain $D \subset \mathbb{D}$ such that $I \subset \partial D$, $\partial \mathbb{D}$ is locally connected, and f is univalent in D.

[Sketch of proof]

Lemma 3 Lemma 2 still holds if we replace the assumption $f(J) \subset \partial f(\mathbb{D})$ by $f(J) \subset \partial f(\mathbb{W})$ for some component \mathbb{W} of $f(\mathbb{D}) \setminus f(\partial \mathbb{D})$. **Theorem 1** Let f be analytic in \mathbb{D} and continuous on $\overline{\mathbb{D}}$. Suppose the set of limit points of $Z = \{z \in \mathbb{D} : f'(z) = 0\}$ is $\partial \mathbb{D}$. Then f has the Cantor boundary behavior.

Theorem 2 Let f be analytic in \mathbb{D} and continuous on $\overline{\mathbb{D}}$. Suppose, for any non-degenerated interval $I \subset [0, 2\pi]$, there exist $\kappa > 0$, C > 0, and $0 < r_0 < 1$ such that, for sufficiently small $\lambda > 0$,

$$\int_{I} |f'(re^{i\theta})|^{\lambda} d\theta \ge \frac{C}{(1-r)^{\lambda \kappa}}, \quad r_0 < r < 1.$$

Then f has the Cantor boundary behavior.

Lemma 4 For $\theta_{k,m} := 2\pi m q^{-k}$ with $m = 0, ..., q^k - 1$, $k = 1, 2, ..., there exist C > 0, 0 < \alpha < 1$, and $0 < \tau_k < \delta q^{-k}$ such that

$$\Re(e^{i\theta_{k,m}}f'(z)) \ge \frac{C}{(1-|z|)^{\kappa}}, \quad z \in S_{\alpha}(\theta_{k,m},\tau_j) \setminus \{e^{i\theta_{k,m}}\}$$

In order to apply Theorem 2, it is more convenient to modify the integral mean growth condition to be discretized growth condition of |f'|.

Lemma 5 For $\theta_{k,m} := 2\pi m q^{-k}$ with $m = 0, \ldots, q^k - 1$, $k = 1, 2, \ldots$, suppose there exist $\kappa > 0$, $\delta > 0$, and $\eta \in (0, \frac{\pi}{2})$ such that

$$|f'(z)| \ge c(1 - |z|)^{-\kappa}$$

for $z \in S_{\eta}(\theta_{k,m}, \frac{\delta}{2^k})$ and $\frac{\delta}{2^{k+1}} \leq 1 - |z| < \frac{\delta}{2^k}$. Then the integral mean condition of Theorem 2 is satisfied.

Theorem 3 For $0 < \beta < 1$, $q \ge 2$ an integer, the complex Weierstrass function $f_{q,\beta}$ has Cantor boundary behavior.

Theorem 4 There exists a function \mathcal{G} such that, for any $z_{k,m}$,

$$F(z + z_{k,m}) = F(z_{k,m}) + \mathcal{G}(z)z^{\alpha - 1} + zp_{k,m}(z), \quad 0 < \arg(z) < 2\pi,$$

where

(i) \mathcal{G} is continuous on $\mathbb{C}\setminus\{0\}$, analytic in $\Omega(\frac{\pi}{2})$ and $\mathcal{G}(2z) = \mathcal{G}(z)$ in $0 \leq \arg(z) < 2\pi$. (ii) $p_{k,m}(z)$ is bounded continuous on \mathbb{C} , and analytic in $\Omega(\frac{\pi}{2}) \cup \{z : |z| < \frac{3}{2^{k+1}}\}$.

Proposition 5 There exists C > 0 such that

$$max_{dist(z,K)\geq t}|F'(z)| \leq Ct^{\alpha-2};$$

and the order is attained at the dyadic points of $\partial \Delta_0$, in the sense that there exists $0 < \eta < \frac{\pi}{2}$, $\delta > 0$ and c > 0 such that for any $z \in \Omega(\eta; 2^{-k}\delta)$,

$$|F'(z+z_{k,m})| \ge c|z|^{\alpha-2}.$$

Theorem 5 The Cauchy transform F has the Cantor boundary behavior

Theorem 6 The area of the Riemann region $F(\Delta_0)$ is finite, but it is infinite for $F(\mathbb{C}\backslash K)$.

Proposition 6 $dim_{\mathcal{H}}F(\partial \Delta_0) \leq (\alpha - 1)^{-1} (\approx 1.70951).$

Conjecture 1 The box dimension and the Hausdorff dimension of $F(\partial \Delta_0)$ are $(\alpha - 1)^{-1}$.

Let $Gr(f; I) = \{(t, f(t)) : t \in I\}$ denote the graph of f on an interval I.

Proposition 7 dim_BGr($\Re(F)$; $\partial \Delta_0$) and dim_BGr($\Im(F)$; $\partial \Delta_0$) are $3 - \alpha$.