Cantor Boundary Behavior of Analytic Functions

Xin-Han Dong, Ka-Sing Lau

Proposition 1 Let Ω be a bounded simply connected domain. Let f be a nonconstant analytic function in Ω and continuous on $\bar{\Omega}$. Suppose $\mathbb{C}_{\infty} \backslash f(\partial \Omega)=\bigcup_{j \geq 0} \mathbb{W}_{j}$ is the unique decomposition into components. Then:
(i) Each \mathbb{W}_{j} is a simply connected domain.
(ii) $f^{-1}(f(\partial \Omega))$ is connected and each component of $\Omega \backslash f^{-1}(f(\partial \Omega))$ is a simply connected domain

Let $n_{f}(w ; K)$ denote the number of roots $z \in K$ for equation $f(z)=w$, counting according to multiplicity.

Proposition 2 With the above assumption, suppose that $\mathbb{W}_{j} \cap f(\Omega) \neq \emptyset$. Let $f^{-1}\left(\mathbb{W}_{j}\right)=$ $\bigcup_{k=1}^{q_{j}} O_{j}^{k}$ be the decomposition of the open set $f^{-1}\left(\mathbb{W}_{j}\right)$ into components. Then $1 \leq q_{j}<+\infty$; each O_{j}^{k} is a simply connected component of $\Omega \backslash f^{-1}(f(\partial \Omega))$ and

$$
f\left(O_{j}^{k}\right)=\mathbb{W}_{j}, f\left(\partial O_{j}^{k}\right)=\partial \mathbb{W}_{j}
$$

Moreover, for each $w \in \mathbb{W}_{j}, n_{f}\left(w ; O_{j}^{k}\right) \equiv n_{j, k}$ and $\sum_{k=1}^{q_{j}} n_{j, k} \equiv n_{f}(w, \Omega)$.
If, in addition $\partial \Omega$ is locally connected, then all the $\partial \mathbb{W}_{j}$ and ∂O_{j}^{k} are locally connected.
Proposition 3 With the above assumption and notation, f^{\prime} has $n_{j, k}-1$ zeros in O_{j}^{k}
The proof depends on the following lemma and the Riemann mapping theorem.
Lemma 1 Let f be analytic in \mathbb{D} with $f(\mathbb{D})=\mathbb{D}$. Suppose $n_{f}(w ; \mathbb{D}) \equiv k$ for all $w \in \mathbb{D}$ for all $w \in \mathbb{D}$; then f is a finite Blaschke product of degree k, and $f^{\prime}(z)$ has $k-1$ zeros in \mathbb{D}.

Proposition 4 Let f be a Blaschke product of degree k and let Z be a set of zeros of f^{\prime} in \mathbb{D}_{z}. Suppose $f(Z) \subset L$ where L is a Jordan curve in \mathbb{D}_{w} except for an end point $\xi_{0} \in \partial \mathbb{D}_{w}$. Let $G=\mathbb{D}_{w} \backslash L$ (it is simply connected), and let $f^{-1}(G)=\bigcup_{j=1}^{d} O_{j}$ be the connected component decomposition as in Proposition 2. Then $d=k$, and f is univalent in O_{j} with $f\left(O_{j}\right)=G$.

Definition 1 Let f be analytic in \mathbb{D} and continouous on $\overline{\mathbb{D}}$. We say that f has the Cantor boundry behaviour if $f^{-1}(\partial f(\mathbb{D}))$ and $\partial O \cap \partial \mathbb{D}$ are Cantor type sets in $\partial \mathbb{D}$ (whenever it is nonempty) where O is any simply connected component of $\mathbb{D} \backslash f^{-1}(f(\partial \mathbb{D}))$ (as in Proposition 1).

Lemma 2 Let f be analytic in \mathbb{D} and continuous on $\overline{\mathbb{D}}$. If there is a non-degenerated arc $J \subset \partial \mathbb{D}$ such that $f(J) \subset \partial f(\mathbb{D})$, then there exists a non-degenerated subarc $I \subset J$ and a bounded simply connected domain $D \subset \mathbb{D}$ such that $I \subset \partial D, \partial \mathbb{D}$ is locally connected, and f is univalent in D.
[Sketch of proof]
Lemma 3 Lemma 2 still holds if we replace the assumption $f(J) \subset \partial f(\mathbb{D})$ by $f(J) \subset \partial f(\mathbb{W})$ for some component \mathbb{W} of $f(\mathbb{D}) \backslash f(\partial \mathbb{D})$.

Theorem 1 Let f be analytic in \mathbb{D} and continuous on $\overline{\mathbb{D}}$. Suppose the set of limit points of $Z=\left\{z \in \mathbb{D}: f^{\prime}(z)=0\right\}$ is $\partial \mathbb{D}$. Then f has the Cantor boundary behavior.

Theorem 2 Let f be analytic in \mathbb{D} and continuous on $\overline{\mathbb{D}}$. Suppose, for any non-degenerated interval $I \subset[0,2 \pi]$, there exist $\kappa>0, C>0$, and $0<r_{0}<1$ such that, for sufficiently small $\lambda>0$,

$$
\int_{I}\left|f^{\prime}\left(r e^{i \theta}\right)\right|^{\lambda} d \theta \geq \frac{C}{(1-r)^{\lambda \kappa}}, \quad r_{0}<r<1 .
$$

Then f has the Cantor boundary behavior.
Lemma 4 For $\theta_{k, m}:=2 \pi m q^{-k}$ with $m=0, \ldots, q^{k}-1, k=1,2, \ldots$, there exist $C>0,0<\alpha<$ 1 , and $0<\tau_{k}<\delta q^{-k}$ such that

$$
\Re\left(e^{i \theta_{k, m}} f^{\prime}(z)\right) \geq \frac{C}{(1-|z|)^{\kappa}}, \quad z \in S_{\alpha}\left(\theta_{k, m}, \tau_{j}\right) \backslash\left\{e^{i \theta_{k, m}}\right\}
$$

In order to apply Theorem 2, it is more convenient to modify the integral mean growth condition to be discretized growth condition of $\left|f^{\prime}\right|$.

Lemma 5 For $\theta_{k, m}:=2 \pi m q^{-k}$ with $m=0, \ldots, q^{k}-1, k=1,2, \ldots$, suppose there exist $\kappa>0$, $\delta>0$, and $\eta \in\left(0, \frac{\pi}{2}\right)$ such that

$$
\left|f^{\prime}(z)\right| \geq c(1-|z|)^{-\kappa}
$$

for $z \in S_{\eta}\left(\theta_{k, m}, \frac{\delta}{2^{k}}\right)$ and $\frac{\delta}{2^{k+1}} \leq 1-|z|<\frac{\delta}{2^{k}}$. Then the integral mean condition of Theorem 2 is satisfied.

Theorem 3 For $0<\beta<1, q \geq 2$ an integer, the complex Weierstrass function $f_{q, \beta}$ has Cantor boundary behavior.

Theorem 4 There exists a function \mathcal{G} such that, for any $z_{k, m}$,

$$
F\left(z+z_{k, m}\right)=F\left(z_{k, m}\right)+\mathcal{G}(z) z^{\alpha-1}+z p_{k, m}(z), \quad 0<\arg (z)<2 \pi,
$$

where
(i) \mathcal{G} is continuous on $\mathbb{C} \backslash\{0\}$, analytic in $\Omega\left(\frac{\pi}{2}\right)$ and $\mathcal{G}(2 z)=\mathcal{G}(z)$ in $0 \leq \arg (z)<2 \pi$.
(ii) $p_{k, m}(z)$ is bounded continuous on \mathbb{C}, and analytic in $\Omega\left(\frac{\pi}{2}\right) \cup\left\{z:|z|<\frac{3}{2^{k+1}}\right\}$.

Proposition 5 There exists $C>0$ such that

$$
\max _{\operatorname{dist}(z, K) \geq t}\left|F^{\prime}(z)\right| \leq C t^{\alpha-2}
$$

and the order is attained at the dyadic points of $\partial \Delta_{0}$, in the sense that there exists $0<\eta<\frac{\pi}{2}$, $\delta>0$ and $c>0$ such that for any $z \in \Omega\left(\eta ; 2^{-k} \delta\right)$,

$$
\left|F^{\prime}\left(z+z_{k, m}\right)\right| \geq c|z|^{\alpha-2} .
$$

Theorem 5 The Cauchy transform F has the Cantor boundary behavior
Theorem 6 The area of the Riemann region $F\left(\Delta_{0}\right)$ is finite, but it is infinite for $F(\mathbb{C} \backslash K)$.
Proposition $6 \operatorname{dim}_{\mathcal{H}} F\left(\partial \Delta_{0}\right) \leq(\alpha-1)^{-1}(\approx 1.70951)$.
Conjecture 1 The box dimension and the Hausdorff dimension of $F\left(\partial \Delta_{0}\right)$ are $(\alpha-1)^{-1}$.
Let $\operatorname{Gr}(f ; I)=\{(t, f(t)): t \in I\}$ denote the graph of f on an interval I.
Proposition $7 \operatorname{dim}_{B} \operatorname{Gr}\left(\Re(F) ; \partial \Delta_{0}\right)$ and $\operatorname{dim}_{B} \operatorname{Gr}\left(\Im(F) ; \partial \Delta_{0}\right)$ are $3-\alpha$.

