Notation
$\|v\|$ - standard Euclidean norm for $v \in \mathbb{C}^{n}$,
$\bar{\sigma}(M)=\sup \{|M x|:|x|=1\}=$ maximum eigenvalue of $\left(M^{*} M\right)^{1 / 2}$ - maximum singular value,
$\Delta_{l}:=\left\{\operatorname{diag}\left[\delta_{1} I_{r_{1}}, \ldots, \delta_{S} I_{r_{S}}, \Delta_{S+1}, \ldots, \Delta_{S+F}\right],\right\}$,
where $\delta_{i} \in \mathbb{C}, \Delta_{S+j} \in \mathbb{C}^{m_{j} \times m_{j}}$
$\mathbb{B}_{\Delta_{\mid}}:=\left\{\Delta \in \Delta_{\mid}: \bar{\sigma}(\Delta) \leq 1\right\}$

Definiton

For $M \in \mathbb{C}^{n \times n}$ we define

$$
\mu_{\Delta_{\mid}}(M):=\frac{1}{\min \left\{\bar{\sigma}(\Delta): \Delta \in \Delta_{\mid}, \operatorname{det}(I-M \Delta)=0\right\}}
$$

and we put $\mu_{\Delta_{\mid}}(M):=0$ if for any $\Delta \in \Delta_{\mid}$matrix $I-M \Delta$ is singular. μ is continuous function.

Consider a complex matrix

$$
M=\left[\begin{array}{ll}
M_{11} & M_{12} \\
M_{21} & M_{22}
\end{array}\right]
$$

Definiton

We define a two blocks structure the following way:

$$
\begin{aligned}
& \Delta_{\mid 1}:=\left\{\Delta_{1} \text { is matrix }: M_{11} \Delta_{1} \text { is squere }\right\} \\
& \Delta_{\mid 2}:=\left\{\Delta_{2} \text { is matrix }: M_{22} \Delta_{1} \text { is squere }\right\}
\end{aligned}
$$

For $\Delta_{2} \in \Delta_{\mid 2}$ consider the loop equations:

$$
\begin{gathered}
e=M_{11} d+M_{12} w \\
z=M_{21} d+M_{22} w \\
w=\Delta_{2} z
\end{gathered}
$$

Definiton

Set of equations :

$$
\begin{aligned}
e= & M_{11} d+M_{12} w, \\
z= & M_{21} d+M_{22} w, \\
& w=\Delta_{2} z .
\end{aligned}
$$

is called well posed if for any vector d, there exist unique vectors w, z and e satisfying the loop equations.

Observation

Equations are well posed if and only if $\operatorname{det}\left(I-M_{22} \Delta_{2}\right) \neq 0$
When the inverse does exist the vectors e and d satisfty:

$$
e=P\left(M, \Delta_{2}\right) d
$$

where

$$
P\left(M, \Delta_{2}\right):=M_{11}+M_{12} \Delta_{2}\left(I-M_{22} \Delta_{2}\right)^{-1} M_{21}
$$

Analogous formula describes $P\left(\Delta_{1}, M\right)$,

$$
P\left(\Delta_{1}, M\right):=M_{22}+M_{21} \Delta_{1}\left(I-M_{11} \Delta_{1}\right)^{-1} M_{12} .
$$

We can extend the definition P in the following way. Suppose we have two complex matrix:

$$
Q:=\left[\begin{array}{ll}
Q_{11} & Q_{12} \\
Q_{21} & Q_{22}
\end{array}\right] \quad M:=\left[\begin{array}{ll}
M_{11} & M_{12} \\
M_{21} & M_{22}
\end{array}\right]
$$

with $Q_{22} M_{11}$ well defined and square. If $I-Q_{22} M_{11}$ is invertible then we define:

$$
P(Q, M):=\left[\begin{array}{cc}
P\left(Q, M_{11}\right) & Q_{12}\left(I-M_{11} Q_{22}\right)^{-1} M_{12} \\
M_{21}\left(I-Q_{22} M_{11}\right)^{-1} Q_{21} & P\left(Q_{22}, M\right)
\end{array}\right]
$$

Next we only consider equation:

$$
\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=P(Q, M)\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]
$$

Definiton

We define:

$$
\mathbb{B}_{i}:=\left\{\Delta_{i} \in \Delta_{\mid i}: \bar{\sigma}\left(\Delta_{i}\right) \leq 1\right\}
$$

and structure Δ_{\mid}as

$$
\Delta_{\mid}:=\left\{\left[\begin{array}{cc}
\Delta_{1} & 0 \\
0 & \Delta_{2}
\end{array}\right]: \Delta_{1} \in \Delta_{\mid 1}, \Delta_{2} \in \Delta_{\mid 2}\right\}
$$

and

$$
\mu_{i}:=\mu_{\Delta_{\mid i}} \text { for } \mathrm{i}=1,2
$$

Theorem

The linear fractional transformation $P\left(M, \Delta_{2}\right)$ is well possed for all $\Delta_{2} \in \mathbb{B}_{2}$ if and only if $\mu_{2}\left(M_{22}\right)<1$

Theorem

(Main Loop Theorem)

$$
\mu_{\Delta}(M)<1 \Leftrightarrow\left\{\begin{array}{c}
\mu_{2}\left(M_{22}\right)<1 \\
\max _{\Delta_{2} \in \mathcal{B}_{2}} \mu_{1}\left(P\left(M, \Delta_{2}\right)\right)<1
\end{array}\right.
$$

Proof.

Of course $\mu_{\Delta}(M)<1$ implies that $\mu_{2}\left(M_{22}\right)<1$ Let $\Delta_{i} \in \Delta_{\mid i}$ be such that $\bar{\sigma}\left(\Delta_{i}\right) \leq 1$, and define

$$
\Delta=\operatorname{diag}\left[\Delta_{1}, \Delta_{2}\right]
$$

. We see that

$$
\operatorname{det}(I-M \Delta)=\operatorname{det}\left[\begin{array}{cc}
I-M_{11} \Delta_{1} & -M_{12} \Delta_{2} \\
-M_{21} \Delta_{1} & I-M_{22} \Delta_{2}
\end{array}\right]
$$

Because $I-M_{22} \Delta_{2}$ is invertible, hence

$$
\operatorname{det}(I-M \Delta)=\operatorname{det}\left(I-M_{22} \Delta_{2}\right) \cdot \operatorname{det}\left(I-M_{11} \Delta_{1}-M_{12} \Delta_{2}\left(I-M_{22} \Delta_{2}\right)^{-1} M_{21} \Delta_{1}\right)
$$

Proof.

and therefore

$$
\operatorname{det}(I-M \Delta)=\operatorname{det}\left(I-M_{22} \Delta_{2}\right) \operatorname{det}\left(I-P\left(M, \Delta_{2}\right) \Delta_{1}\right)
$$

Example

Let $\Delta_{\mid 1}:=\left\{\delta_{1} I_{n}: \delta_{1} \in \mathbb{C}\right\}, \Delta_{\mid 2}:=\mathbb{C}^{m \times m}$. Recall that $\mu_{1}(A)=\varrho(A), \mu_{2}=\bar{\sigma}(D)$. Let A, B, C and D be given. Consider the state space model of a discrete time

$$
\begin{gathered}
x_{k+1}=A x_{k}+B u_{k} \\
y_{k}=C x_{k}+D u_{k}
\end{gathered}
$$

and define

$$
M:=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]
$$

Notations and definitons

Example

The following conditions are equivalent:

- $\rho(A)<1$ and

$$
\max _{\delta_{1} \in \mathbb{C},\left|\delta_{1}\right| \leq 1}\left(D+C \delta_{1}\left(I-A \delta_{1}\right)^{-1} B\right)<1
$$

- $\bar{\sigma}(D)<1$ and

$$
\max _{\Delta_{2} \in \mathbb{C}^{m \times m}, \bar{\sigma}\left(\Delta_{2}\right) \leq 1} \rho\left(A+B \Delta_{2}\left(I-D \Delta_{2}\right)^{-1} C<1\right.
$$

- $\mu_{\Delta_{\mathrm{l}}}(M)<1$

Let $\Delta_{\mid 1}$ and $\Delta_{\mid 2}$ be two given structures. Define

$$
\begin{gathered}
\Delta_{\mid}:=\left\{\operatorname{diag}\left[\Delta_{1}, \Delta_{2}\right]: \Delta_{i} \in \Delta_{\mid i}\right\} \\
\mathbb{D}_{i}:=\left\{\operatorname{diag}\left[D_{1}, D_{2}, \ldots, D_{S}, d_{S+1} I_{m_{1}}, \ldots, d_{S+F} I_{m_{F}}\right]:\right. \\
\left.D_{i}=D_{i}^{*}>0, d_{S+j} \in \mathbb{R}, d_{S+j}>0\right\} \subset \Delta_{\mid i} \\
\mathbb{D}:=\left\{\operatorname{diag}\left[D_{1}, D_{2}\right]: D_{i} \in \mathbb{D}_{i}\right\}
\end{gathered}
$$

Theorem

(Redheffer, 1959, 1960) Let M be

$$
M=\left[\begin{array}{ll}
M_{11} & M_{12} \\
M_{21} & M_{22}
\end{array}\right]
$$

Suppose there is a $D \in \mathbb{D}$ such that $\bar{\sigma}\left(D^{1 / 2} M D^{-1 / 2}\right)<1$. Then there exists a $D_{1} \in \mathbb{D}_{1}$ such that

$$
\max _{\Delta_{2} \in \mathbb{B}_{2}} \bar{\sigma}\left(D_{1}^{1 / 2} P\left(M, \Delta_{2}\right) D_{1}^{-1 / 2}\right)<1
$$

Proof.

Let D_{1} and D_{2} be the separate parts of the $D \in \mathbb{D}$ such that $\bar{\sigma}\left(D^{1 / 2} M D^{-1 / 2}\right)<1$. We see that $\mu_{2}\left(M_{22}\right)<1$ so for any $\Delta_{2} \in \mathbb{B}_{2}$ the two LFT's are well possed (?). By assumption for $d \neq 0$ we find unique e, w, z such that

$$
\|z\|^{2}+\|e\|^{2}<\|w\|^{2}+\|d\|^{2}
$$

and since $\bar{\sigma}\left(\Delta_{2}\right) \leq 1$

$$
\|w\|^{2} \leq\|z\|^{2} .
$$

We get

$$
\|e\|^{2}<\|d\|^{2}
$$

Notations and definitons
Linear Fractional Transformation (LFT)
The Main Loop Theorem
Upper bound LFT

> Properties of ∇ $S=0, F=1$ and $\begin{array}{r}S=1, F=0-\text { TRUE } \\ S=0, F=2-\text { TRUE } \\ S=1, F=1-\text { TRUE } \\ S=0, F=4-\text { FALSE }\end{array}$ Optimal scalings with $M \in \mathbb{R}^{\cdots} \cdots$

BREAK

Notations and definitons

Recall that:

If $M \in \mathbb{C}^{n \times n}$ then we have sigular value decomposition

$$
M=\sigma_{1} U V^{*}+U_{2} \Sigma_{2} V_{2}^{*}
$$

For U and V compatibly with $\Delta_{\text {I }}$

$$
U=\left[\begin{array}{c}
A_{1} \\
\cdot \\
\dot{A_{S}} \\
E_{1} \\
\cdot \\
\dot{E_{F}}
\end{array}\right] \quad V=\left[\begin{array}{c}
B_{1} \\
\cdot \\
B_{S} \\
H_{1} \\
\cdot \\
\cdot \\
H_{F}
\end{array}\right]
$$

we define

$$
\begin{gathered}
P_{i}^{\eta}:=A_{i} \eta \eta^{*} A_{i}^{*}-B_{i} \eta \eta^{*} B_{i}^{\eta}, \\
p_{S+j}^{\eta}:=\eta^{*}\left(E_{j}^{*} E_{j}-H_{j}^{*} H_{j}\right) \eta
\end{gathered}
$$

and

$$
\nabla_{M}:=\left\{\operatorname{diag}\left[P_{1}^{\eta}, \ldots, P_{S}^{\eta}, p_{S+1}^{\eta} I_{m_{1}}, \ldots, p_{S+F-1}^{\eta} I_{m_{F-1}}, O_{m_{F}}\right]: \eta \in \mathbb{C}^{r},\|\eta\|=1\right\}
$$

We have known

Theorem

$$
\inf _{D \in \mathbb{D}} \bar{\sigma}\left(D^{1 / 2} M D^{-1 / 2}\right)=\bar{\sigma}(M) \quad \text { iff } \quad 0 \in \operatorname{conv}\left(\nabla_{M}\right)
$$

Theorem

The following statements are equivalent
(a) $0 \in \nabla_{M}$
(b) There exists $\eta \in \mathbb{C}^{r},\|\eta\|=1$ and $Q \in \mathbb{Q}:=\left\{A^{*} A=I\right\}$ with $Q U \eta=V \eta$
(c) $\bar{\sigma}(M)=\mu_{\Delta}(M)$

Definiton

Consider structure Δ_{\mid}has the following property :
if $W \in \mathbb{C}^{n \times n}$ and $0 \in \operatorname{conv}\left(\nabla_{W}\right)$ then $0 \in \nabla_{W}$.
In this case we say $\Delta_{\text {I }}$ is μ-simple.

Theorem

Suppose the block structure Δ is μ-simple. Then for every $M \in \mathbb{C}^{n \times n}$ we have

$$
\mu_{\Delta}(M)=\inf _{D \in \mathbb{D}} \bar{\sigma}\left(D^{1 / 2} M D^{-1 / 2}\right)
$$

Theorem

(Fact from Functional Analysis)

$$
\rho(M)=\inf _{D \in \mathbb{C}^{n \times n}, D=D^{*}>0} \bar{\sigma}\left(D^{1 / 2} M^{-1 / 2}\right)
$$

In this section we will answer the question:
when we have

$$
\mu_{\Delta}(M)=\inf _{D \in \mathbb{D}} \bar{\sigma}\left(D^{1 / 2} M D^{-1 / 2}\right) ?
$$

Notations and definitons
Linear Fractional Transformation (LFT) The Main Loop Theorem Upper bound LFT

$$
S=0, F=1 \text { and } \begin{array}{r}
\text { Properties of } \nabla \\
S=1, F=0-\text { TRUE } \\
S=0, F=2-\text { TRUE } \\
S=1, F=1-\text { TRUE } \\
S=0, F=4-\text { FALSE }
\end{array}
$$

Optimal scalings with $M \in \mathbb{R}$

Case $S=0, F=1$ is trivial.
In case $S=1, F=0$ we have

$$
\rho(M)=\inf _{D \in \mathbb{C}^{n \times n}, D=D^{*}>0} \bar{\sigma}\left(D^{1 / 2} M^{-1 / 2}\right)
$$

Notations and definitons

In this situation we have

$$
\nabla=\left\{\eta^{*}\left(E^{*} E-F^{*} F\right) \eta: \eta \in \mathbb{C}^{r},\|\eta\|=1\right\}
$$

Since $E^{*} E-F^{*} F$ is Hermitian, ∇ is a closed interval in the real line.

In this case we have

$$
\nabla=\left\{A \eta \eta^{*} A^{*}-B \eta \eta^{*} B^{*}: \eta \in \mathbb{C}^{r},\|\eta\|=1\right\}
$$

for some $r>0$ and $A, B \in \mathbb{C}^{r_{1} \times r}$.
Of course we see that ∇ is not convex ($A=I, B=0$)

Theorem

Let ∇ be defined as

$$
\nabla=\left\{A \eta \eta^{*} A^{*}-B \eta \eta^{*} B^{*}: \eta \in \mathbb{C}^{r},\|\eta\|=1\right\}
$$

for some $r>0$ and $A, B \in \mathbb{C}^{r_{1} \times r}$.
If $0 \in \operatorname{conv}(\nabla)$, then $0 \in \nabla$

Proof.

Suppose that $0 \in \operatorname{conv}(\nabla)$. Then for some integer p. There exists $\alpha \in[0,1]$ with $\sum_{i=1}^{p}$ and vectors $\eta_{i} \in \mathbb{C}^{r}$ with $\left\|\eta_{i}\right\|$ such that

$$
\sum_{i=1}^{p} \alpha_{i}\left(A \eta_{i} \eta_{i}^{*} A^{*}-B \eta_{i} \eta_{i}^{*} B^{*}\right)=0
$$

. We see that

$$
A\left(\sum_{i=1}^{p} \alpha_{i} \eta_{i} \eta_{i}^{*}\right) A^{*}=B\left(\sum_{i=1}^{p} \alpha_{i} \eta_{i} \eta_{i}^{*}\right) B^{*} .
$$

Next we define $X:=\sum_{i=1}^{p} \alpha_{i} \eta_{i} \eta_{i}^{*}$. We easy check $X=X^{*}$ and $X \geq 0$. Lets $X^{1 / 2}$ be its root. Therefore we have

$$
A X^{1 / 2} X^{1 / 2} A^{*}=B X^{1 / 2} X^{1 / 2} B^{*}
$$

Notations and definitons

Proof.

We get

$$
A X^{1 / 2}=B X^{1 / 2} V
$$

where V is unitary matrix ($V:=X^{1 / 2} B^{*} A X^{-1 / 2}$). Let v be an eigenvector of V and define $u:=X^{1 / 2}$. Then

$$
A u=e^{i \theta} B u
$$

We use theorem with

$$
Q:=\left[\begin{array}{cc}
\mathrm{e}^{i \theta} l & 0 \\
0 & l
\end{array}\right] .
$$

In this case $(S=0, F=4)$ we take $m_{j}=1$.
Let $a, b, c>0$ and $d, f \in \mathbb{C}, \psi_{1}, \psi_{2} \in \mathbb{R}$. Define $U, V \in \mathbb{C}^{4 \times 2}$ by

$$
U:=\left[\begin{array}{ll}
a & 0 \\
b & b \\
c & i c \\
d & f
\end{array}\right], \quad, \quad V:=\left[\begin{array}{cc}
0 & a \\
b & -b \\
c & -i c \\
\mathrm{e}^{i \psi_{1} f} & \mathrm{e}^{i \psi_{2} d}
\end{array}\right]
$$

Suppose U, V are unitary. For example:
set $\gamma:=3+3^{1 / 2}, \beta:=3^{1 / 2}-1$. Then $a=(2 / \gamma)^{1 / 2}, b=1 /(\gamma)^{1 / 2}=c$, $d=-(\beta / \gamma)^{1 / 2} f=(1+i)(1 /(\gamma \beta))^{1 / 2}, \psi_{1}=-\pi / 2, \psi_{2}=\pi$

Next, we define matrix

$$
M:=U V^{*}
$$

Obviously $\bar{\sigma}(M)=1$. Take $\eta \in \mathbb{C}^{2}$ such that $\|\eta\|=1$. Of course η is the form

$$
\eta=\left[\begin{array}{c}
\mathrm{e}^{i \psi_{1}} \cos \theta \\
\mathrm{e}^{i \psi_{2}} \sin \theta
\end{array}\right] .
$$

Define $\Psi:=\Psi_{1}-\Psi_{2}$. We get

$$
\nabla_{M}=\left\{\left[\begin{array}{c}
a^{2}\left(\cos ^{2} \theta-\sin ^{2} \theta\right) \\
4 b^{2} \sin \theta \cos \theta \cos \psi \\
4 c^{2} \sin \theta \cos \theta \sin \psi
\end{array}\right] \in \mathbb{R}^{3}: \Psi, \theta \in \mathbb{R}\right\}
$$

Easy calculations show that $0 \notin \nabla_{M}$, hence $\mu(M)<1$.
On the other hand, setting $\theta=0$ and $\theta=\pi / 2$ we get $\left[a^{2}, 0,0\right],\left[-a^{2}, 0,0\right] \in \nabla_{M}$.
Therefore $0 \in \operatorname{conv}\left(\nabla_{M}\right)$. We obtain

$$
\inf _{D \in \mathbb{D}} \bar{\sigma}\left(D^{1 / 2} M D^{-1 / 2}\right)=\bar{\sigma}(M)=1
$$

This counter-example show that if $S+F \geq 4$, there exist matrices M with

$$
\inf _{D \in \mathbb{D}} \bar{\sigma}\left(D^{1 / 2} M D^{-1 / 2}\right)=\bar{\sigma}(M)>\mu(M)
$$

Other cases are false, but we won't prove it.

In section 3 we have proved the following

Theorem

The following conditions are equivalnet
(1) $\bar{\sigma}\left(D^{1 / 2} M D^{-1 / 2}\right)<\beta$
(2) $\lambda_{\max }\left(D^{1 / 2} M^{*} D^{-1 / 2} D^{1 / 2} M D^{-1 / 2}\right)<\beta^{2}$
(3) $D^{1 / 2} M^{*} D^{-1 / 2} D^{1 / 2} M D^{-1 / 2}-\beta^{2} I<0$
(1) $M^{*} D M-\beta^{2} D<0$
where $M \in \mathbb{C}^{n \times n}, \beta>0, D \in \mathbb{D}$
Next we will prove main theorem in this section:

Theorem

Let \mathbb{D}_{R} be the set of real, symetric, members of \mathbb{D}. If M is real, then

$$
\inf _{D \in \mathbb{D}} \bar{\sigma}\left(D^{1 / 2} M D^{-1 / 2}\right)=\inf _{D_{R} \in \mathbb{D}_{R}} \bar{\sigma}\left(D_{R}^{1 / 2} M D_{R}^{-1 / 2}\right)
$$

Proof.

Let $D \in \mathbb{D}$ with $D=D_{r}+i D_{i}$ and suppose that $\bar{\sigma}\left(D^{1 / 2} M D^{-1 / 2}\right)<\beta$. Then

$$
M^{T}\left(D_{r}+i D_{i}\right) M-\beta^{2}\left(D_{r}+i D_{i}\right)<0
$$

and therefore

$$
\left.M^{T} D_{r} M-\beta^{2} D_{r}\right)<0
$$

Hence

$$
\bar{\sigma}\left(D_{r}^{1 / 2} M D_{r}^{-1 / 2}\right)<\beta
$$

