Notations and definitons

Notation
||v|| - standard Euclidean norm for v € C",

(M) = sup{|Mx| : |x| = 1} = maximum eigenvalue of (M* M)1/2 - maximum
singular value,

A= {diag[d1/r, ., 6slrs, Ast1, s AsyF], 1
where 6; € C, Agyj € CM*™i

BAl = {A € Al E(A) < 1}



Notations and definitons

For M € C"*" we define

1

MA‘(M) = min{7(A) : A € Aj,det(/ — MA) = 0}

and we put Ba, (M) := 0 if for any A € A| matrix | — MA is singular.
W is continuous function.




Linear Fractional Transformation (LFT)

Consider a complex matrix
M1 Mz
M =
[ M Mz

We define a two blocks structure the following way:

A‘l = {A1 is matrix : M11/A1is squere}

Ap = {A> is matrix : MxyAjis squere}

For A; € A, consider the loop equations :
e = Mud+ Mpw,
z = Mo1d + Mxnw,

w = Az



Linear Fractional Transformation (LFT)

Definiton

Set of equations :
e = Mud+ Mpw,

z = Mo1d + Mo w,
w = Arz.

is called well posed if for any vector d, there exist unique vectors w, z and e satisfying
the loop equations.

Observation

Equations are well posed if and only if det(l — Ma2As) # 0

When the inverse does exist the vectors e and d satisfty:

e =P(M, As)d



Linear Fractional Transformation (LFT)

where
P(M, Az) := Myy 4+ MiaAo(l — My Ap) 1My

Analogous formula describes P(A1, M),
P(A1, M) := Map + Moy Ay (I — My Ay) ™t M.

We can extend the definition P in the following way.
Suppose we have two complex matrix:

Q::[Qu le} M::[Mu M12}

@1 Q» M1 M2
with Q22 M11 well defined and square. If | — Qo2Myy is invertible then we define:
P(Q, Mi1) Qu2(/ — M11@22) "1 M2
P(Q, M) = ’
(@ M) [ My (1 — QuaMyy) Qo P(Qz2, M)

Next we only consider equation:

[n]=rem]



The Main Loop Theorem

Definiton

We define:
B; := {A,‘ E A|,- :E(A,') < 1}

and structure A| as
A 0
A‘ :{|: 01 A2 :| :AleA‘l,AQEAp}

and
Wi = B fori=1,2

The linear fractional transformation P(M, Ay) is well possed for all Ay € By if and
only if pp(Mxp) < 1




The Main Loop Theorem

Theorem

(Main Loop Theorem)

pa(M2) < 1,
M 1&
/»LA( ) < { maxa, e B, ,ul(P(M7A2)) <1

Proof.

Of course ua(M) < 1 implies that po(M22) < 1 Let A; € Aj; be such that
a(A;) <1, and define

A = diag[A1, Ay]
. We see that

I —MiAy —MpA; }

det(/ — MA) = det [ CMoAy | — MoyAs

Because | — My, A, is invertible, hence

det(l = MA) = det(I = MQQAQ) . det(l — M1 A — MleQ(/ = M22A2)71M21A1).




The Main Loop Theorem

and therefore

det(l — MA) = det(/ — MypAz) det(l — P(M, Ag)A;).

| D

Example

Let Ajy :={d1/r : 61 € C}, Ay := C™*™. Recall that y11(A) = o(A), p2 = 7(D).
Let A, B, C and D be given. Consider the state space model of a discrete time

Xk+1 = Axyk + Buy,

Yk = Cxx + Duy

we] 28]

and define




The Main Loop Theorem

The following conditions are equivalent:
o p(A) <1 and

max (D4 Co1(l — As1)"1B) <1
01€C, |61 ]<1

e (D) <1 and

max p(A+ BAx(I — DA)IC <1
DreCMXm G (A,)<1

o pa (M) <1




Upper bound LFT

Let Ay and A|; be two given structures. Define

A = {diag[A1, Ar] 1 Aj € Ay}

D; := {diag[D1, D, ..., Ds, dsi1lmy s ..., dsiFlmg] -
D; = D;k >0, d5+j € R, d5+j > 0} C A‘,-
D:= {diag[Dl, D2] :D; e ]D),'}

Theorem

(Redheffer, 1959, 1960) Let M be

My Mz
M = .
{ Mo M2 }

Suppose there is a D € D such that 5(DY/2MD~1/2) < 1. Then there exists a
D; € Dy such that

F(DM2P(M, Ar)DIY?) < 1.
ATngng( L “P(M,Ax)D; 7)) <




Upper bound LFT

Proof.

Let D; and D; be the separate parts of the D € I such that 7(D/2MD~1/2) < 1.
We see that pp(Ma2) < 1 so for any Ay € By the two LFT's are well possed (?).
By assumption for d # 0 we find unique e, w, z such that

llzI[? + [lell? < [lwl? + ||d][>

and since g(A2) <1
2 2
[lw]l* < 1|z|I*.

We get
llell? < lldlf?




BREAK



Properties of V

Recall that:
If M € C"%" then we have sigular value decomposition

M=o UV* + U222V2*

For U and V compatibly with A,

Ap B;

_ | As _ | Bs
U= E, V = H,
Er Hr



Properties of V

we define
P = Amm* A7 — Bim* B/,

Py = n"(E Ej — Hi Hj)n
and
Vur = {diag[P, ., PL, Ly hmgs s P2y ey Ome] s m € C7, ]| = 1}

We have known

gnBﬁ(Dl/ZMD*W):a(M) iff 0 conv(Vy)
S




Properties of V

Theorem

The following statements are equivalent
(a) 0eVpum
(b) There existsp € C', ||n|| =1 and Q € Q := {A*A = I} with
QUn = Vn
(c) T(M) = pa(M)

Definiton

Consider structure A| has the following property :

if W € C"™" and 0 € conv(Vy) then 0 € V.

In this case we say A is p-simple.




Properties of V

Theorem

Suppose the block structure A is p-simple. Then for every M € C"*" we have

_ e =pl/2 —1/2
B = Al @D

Theorem

| N

(Fact from Functional Analysis)

p(M) = inf F(DY/2M~1/2)
DeCn*n ,D=D* >0

In this section we will answer the question:
when we have

pa(M) = (DY2MD~Y/2)?

inf &
DeD



§$=0,F=1and S=1,F =0-TRUE

Case S =0, F =1 is trivial.
In case S =1,F =0 we have

p(M) = inf a(DY2M~1/2)
DeCnxn D=D*>0



S=0,F=2-TRUE

In this situation we have
V={n"(E"E-F*F)n:neC |nl|=1}

Since E*E — F*F is Hermitian, V is a closed interval in the real line.



S=1F=1-TRUE

In this case we have
V = {Am*A* — Bmm*B* :n € C', [In|| = 1}

for some r >0 and A, B € C1*",
Of course we see that V is not convex (A=1,B=0)

Let V be defined as

V = {An*A* — Byn*B* :n € C', |[n|| = 1}
for some r > 0 and A, B € C"*".

If 0 € conv(V), then 0 € V




S=1F=1-TRUE

Suppose that 0 € conv(V). Then for some integer p. There exists a € [0, 1] with
>-F_, and vectors n; € C" with ||n;|| such that

p
> ai(Anm; A* — Byinf B*) =0
i=1

. We see that
P P
A ammf)A* = B> amini)B*.
i=1 i=1

Next we define X := Zf’zl ainin;. We easy check X = X* and X > 0. Lets X1/2 pe
its root. Therefore we have

AXL/2X1/2 4% — BXY/2x1/2B*.




S=1F=1-TRUE

Proof.
We get

AXY/2 = px1/2y

where V is unitary matrix ( V := X1/2B*AX~1/2). Let v be an eigenvector of V and
define u := X'/2. Then ;
Au=e%Bu

[ e o
o[ 5]

. We use theorem with




S=0,F=4-FALSE

In this case (S =0,F =4 ) we take m; = 1.
Let a,b,c > 0 and d, f € C, 1,1 € R. Define U, V € C**2 by

a 0 0 a

U = b b 5 ; V = b _b X
c ic c —ic
d f elV1f  eit2yg

Suppose U, V are unitary. For example:
set v:=3+3/23:=31/2 _1. Then a=(2/7)/2, b=1/(y)"/2 =,
d=—(B/NY? f=@0+)1/(B)/? 1= /22 ==



S=0,F=4-FALSE

Next, we define matrix
M = Uv*

Obviously (M) = 1. Take n € C? such that ||n|| = 1. Of course 7 is the form
eV1 cos @
= [ eV2sing } ’
Define V := W¥; — W), We get
a?(cos? § — sin? 9)

Vm= 4b? sin O cos 6 cos W €R3:\IJ,0€R}
4c?sin 6 cos Osin W



S=0,F=4-FALSE

Easy calculations show that 0 ¢ Vy, hence (M) < 1.
On the other hand, setting # = 0 and § = 7/2 we get [a?,0,0],[—a%,0,0] € V.
Therefore 0 € conv(V ). We obtain

inf 3(DY2MD~/2) = 5(M) = 1.

DeD

This counter-example show that if S + F > 4, there exist matrices M with

C e —nl/2pn—1/2) _ =
DlrgDa'(D MD ) =a(M) > p(M).

Other cases are false, but we won't prove it.



Optimal scalings with M € R""*

In section 3 we have proved the following

Theorem

The following conditions are equivalnet
Q o(DY2MD~1/2) < 8
@ Amax(DY2M*D=1/2D1/2MD~1/2) < B2
@ D/2M*D-1/2p1/2\Mp—1/2 — g2 <0
© M*DM — 32D < 0

where M € C"™" 3> 0,D € D

Next we will prove main theorem in this section:



Optimal scalings with M € R""*

Let Dg be the set of real, symetric, members of D. If M is real, then

s o —1/2 —1/2y _ —(pl/2 —1/2
Bréfm)o‘(D MD ) DRIZSJJRO—(DR MDg""7)

Let D € D with D = D, + iD; and suppose that (D/2MD~1/2) < 8. Then
MT(D, + iDj)M — B%(D;, + iD;) < 0

and therefore
MTD,M — 3%D,) < 0

. Hence
7D 1/2MD—1/2) 3
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