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Outline

1 The µ-synthesis problem
2 The spectral Nevanlinna-Pick problem—bidisc (Agler, Young,

1999)
3 The structured Nevanlinna-Pick problem—tetrablock

(Abouhajar, White, Young, 2007)
4 The Agler-Lykova-Young problem—pentablock (Agler, Lykova,

Young, 2014)
5 The spectral/structured Carathéodory-Fejér problem (Huang,

Marcantognini, Young, 2006)/(Young, 2008)
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The µ-synthesis problem is an interpolation problem for
analytic matrix functions, a generalization of the classical
problems of Nevanlinna-Pick and Carathéodory-Fejér.
The symbol µ denotes a type of cost function that is a
refinement of the usual operator norm of a matrix and is
motivated by the problem of the robust stabilization of a plant
that is subject to structured uncertainty.
The µ-synthesis problem is to construct an analytic matrix
function F on the unit disc

satisfying a finite number of interpolation conditions and such
that
µ(F (λ)) ≤ 1 for |λ| < 1.
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Let l, k ∈ N. For a vector subspace E ⊂ Cl×k and a matrix
A ∈ Ck×l put

EA := {X ∈ E : det(Ik −AX) = 0}.

1 E0 = ∅, {0}A = ∅.
2 There are E 6= {0} and A 6= 0 such that EA = ∅.
3 If A 6= 0 then ‖X‖ ≥ ‖A‖−1 for any X ∈ EA, where ‖ · ‖

denotes the operator norm.
4 In particular, inf{‖X‖ : X ∈ EA} > 0, whenever A 6= 0.
5 If α ∈ C∗ then

inf{‖X‖ : X ∈ EαA} = |α|−1 inf{‖X‖ : X ∈ EA}.
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Definition (Doyle, Stein, 1981)

The structured singular value of a matrix A ∈ Ck×l relative to the
vector subspace E ⊂ Cl×k we denote by µE(A) and define by

µE(A) :=

{
1

inf{‖X‖:X∈EA} , if EA 6= ∅,
0, if EA = ∅

.

1 µE : Ck×l → R+. µE is u.s.c.
2 µ{0} ≡ 0, µE(0) = 0.
3 There are E 6= {0} and A 6= 0 such that µE(A) = 0.
4 µE ≤ ‖ · ‖ = µCl×k .
5 If E′ ⊂ E′′ ⊂ Cl×k, then µE′ ≤ µE′′ .
6 µE(αA) = |α|µE(A) for any α ∈ C, A ∈ Ck×l.
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If l = k, n1, . . . , ns,m1, . . . ,mt ∈ N are such that∑s
i=1 ni +

∑t
j=1mj = k,

E =
{

Diag[z1In1 , . . . , zsIns , Z1, . . . , Zt] : zj ∈ C, Zj ∈ Cmj×mj
}
,

then
1 µE(A) = max{r(XA) : X ∈ E, ‖X‖ ≤ 1},
2 µE is continuous,
3 µspan{Ik} = r, where r is the spectral radius.

Going back to the general case of E,
1 µE does not satisfy the triangle inequality,
2 if l = k, Ik ∈ E, then r ≤ µE .

Arkadiusz Lewandowski, Paweł Zapałowski Some Analysable Instances of µ-synthesis

The µ-synthesis problem
The spectral NP problem (bidisc)

The structured NP problem (tetrablock)
The ALY problem (pentablock)

The CF problem

The structured singular value
General form
Our setting
Dimension reduction strategy

Problem (µ-synthesis)

Given k, l ∈ N, E ⊂ Cl×k, A ∈ O(D,Ck×l), B ∈ O(D,Ck×k),
C ∈ O(D,Cl×l), construct F ∈ O(D,ΩµE ) of the form

F = A+BQC for some Q ∈ O(D,Ck×l), (1)

where ΩµE := {X ∈ Ck×l : µE(X) ≤ 1}.

Our setting is
l = k,
B(λ) = (λ− λ1) . . . (λ− λn)Ik, λ ∈ D, for some n ∈ N,
λj ∈ D, j = 1, . . . , n,
C = Ik.

We shall consider only two ”extremal” cases of B.
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If λi 6= λj whenever i 6= j then

F satisfies (1) iff F (λj) = A(λj), j = 1, . . . , n.

Problem (Nevanlinna-Pick type)

Given k, n ∈ N, E ⊂ Ck×k, λj ∈ D, λi 6= λj whenever i 6= j,
Wj ∈ ΩµE , j = 1, . . . , n, construct an F ∈ O(D,ΩµE ) such that

F (λj) = Wj , j = 1, . . . , n.

1 For E = span{Ik} we obtain the spectral Nevanlinna-Pick
problem.

2 For k = 2, E = span {[ 1 0
0 0 ] , [ 0 0

0 1 ]} we obtain the structured
Nevanlinna-Pick problem.

3 For k = 2, E = span {I2, [ 0 1
0 0 ]} we obtain the

Agler-Lykova-Young problem.
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If λ1 = · · · = λn = 0 then

F satisfies (1) iff F (j)(0) = A(j)(0), j = 0, 1, . . . , n− 1.

Problem (Carathéodory-Fejér type)

Given k, n ∈ N, E ⊂ Ck×k, Vj ∈ Ck×k, j = 0, 1, . . . , n, V0 ∈ ΩµE ,
construct an F ∈ O(D,ΩµE ) such that

F (j)(0) = Vj , j = 0, 1, . . . , n.

1 For E = span{Ik} we obtain the spectral Carathéodory-Fejér
problem.

2 For k = 2, E = span {[ 1 0
0 0 ] , [ 0 0

0 1 ]} we obtain the structured
Carathéodory-Fejér problem.
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Define additionally
Ωo
µE

:= {A ∈ Ck×k : µE(A) < 1},
Bk := {A ∈ Ck×k : ‖A‖ ≤ 1},
Bk := {A ∈ Ck×k : ‖A‖ < 1},
Σk := {A ∈ Ck×k : r(A) ≤ 1},
Σo
k := {A ∈ Ck×k : r(A) < 1}.

If span{Ik} ⊂ E ⊂ Ck×k then

Bk ⊂ ΩµE ⊂ Σk, Bk ⊂ Ωo
µE
⊂ Σo

k.

Ωo
µE

is typically an unbounded nonconvex and hitherto unstudied
domain, and so the construction of F ∈ O(D,ΩµE ) is a challenge.
A strategy to find F is
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1 To find a dimension-reducing polynomial map

π : Ck×k → Cr

with π−1(π(ΩµE )) = ΩµE and r < k2.
2 To construct an interpolating function h ∈ O(D, π(ΩµE )) for
π(ΩµE ), i.e. function h satisfying

h(λj) = π(Wj), j = 1, . . . , n.

The idea is that the geometry of lower-dimensional domain
may be more accessible than that of ΩµE itself.

3 To lift h modulo π to F , i.e. to construct an analytic lifting F
of h.

We shall say that F is an analytic lifting of h if F ∈ O(D,C2×2)
and π ◦ F = h.
Recall that if F is an analytic lifting of h then F ∈ O(D,ΩµE )
since π−1(π(ΩµE )) = ΩµE .
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Recall that π(Bk) ⊂ π(ΩµE ). If, moreover,

π(Bk) = π(ΩµE )

then to get h one may proceed as follows.
The geometry and the function theory of the Cartan domain
Bk is rich and long established and there are numerous ways of
constructing H ∈ O(D,Bk); for example one may use the
homogeneity of Bk to construct an interpolating function H
by the standard process of Schur reduction.
Then h := π ◦H ∈ O(D, π(ΩµE )). Such an H we shall call a
Schur lifting of h.
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1 (Agler, Young, 1999) If k = 2, E = span{I2} then

C2×2 3 A π7−→ (trA,detA) ∈ C2,

π(ΩµE ) = π(B2) = G2, where G2 is the symmetrized bidisc.
2 (Abouhajar, White, Young, 2007) If k = 2,
E = span{[ 1 0

0 0 ] , [ 0 0
0 1 ]} then

C2×2 3 A = [aij ]
π7−→ (a11, a22,detA) ∈ C3,

π(ΩµE ) = π(B2) = E, where E is the tetrablock.
3 (Agler, Lykova, Young, 2014) If k = 2, E = span{I2, [ 0 1

0 0 ]}
then

C2×2 3 A = [aij ]
π7−→ (a21, trA,detA) ∈ C3,

π(ΩµE ) = π(B2) = P, where P is the pentablock.
We shall briefly discuss the dimension reduction strategy for these
instances.

Arkadiusz Lewandowski, Paweł Zapałowski Some Analysable Instances of µ-synthesis



The µ-synthesis problem
The spectral NP problem (bidisc)

The structured NP problem (tetrablock)
The ALY problem (pentablock)

The CF problem

Dimension reduction
Interpolation for G (n = 2)
Lifting
Partial solution and the ill-conditioning (n = 2)
The arbitrary k case

Problem (The spectral Nevanlinna-Pick problem)

Given λ1, . . . , λn ∈ D, λi 6= λj whenever i 6= j, and
W1, . . . ,Wn ∈ Σk, construct an F ∈ O(D,Σk) such that

F (λj) = Wj , j = 1, . . . , n.

For k = 1 it reduces to the classical Nevanlinna-Pick problem.

Theorem (Pick, 1916, Nevanlinna, 1919)

Let λj , zj ∈ D, j = 1, . . . , n, λi 6= λj whenever i 6= j. There is an
F ∈ O(D,D) with F (λj) = zj , j = 1, . . . , n, iff[

1− z̄izj
1− λ̄iλj

]n
i,j=1

≥ 0,

i.e. the left-hand side matrix is nonnegative semidefinite.
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Let k = 2 and E = span{I2}. Recall that the closed and open
symmetrized bidiscs are defined by

G = G2 := {(z + w, zw) : z, w ∈ D},

G = G2 := {(z + w, zw) : z, w ∈ D}.

So here we have

C2×2 3 A π7−→ (trA,detA) ∈ C2,

Recall that ΩµE = Σ2.
G2 = π(Σo

2), G2 = π(Σ2), π−1(G2) = Σ2, π−1(G2) = Σo
2.

G is hyperconvex, polynomially convex, starlike about (0, 0),
and C-convex, but not convex.
lG = cG, while G cannot be exhausted by domains
biholomorphic to convex ones.
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The reason why G is amenable to analysis is that we have a
1-parameter family of rational functions

Φω(s, p) =
2ωp− s
2− ωs

, (s, p) ∈ G, ω ∈ T.

We have

Proposition (Agler, Young, 2004)

Φω ∈ O(G,D) for any ω ∈ T. Conversely, if (s, p) ∈ C2 is such
that |Φω(s, p)| < 1 for all ω ∈ T, then (s, p) ∈ G.
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as well as

Proposition (Agler, Young, 2004)

For any ω ∈ T,Φω maps G \ {(2ω̄, ω̄2)} analytically into D.
Conversely, if (s, p) ∈ C2 is such that |Φω(rs, r2p)| < 1 for all
ω ∈ T and r ∈ (0, 1), then (s, p) ∈ G.

Remark
The parameter r is needed: |Φω(s, p)| ≤ 1 for all ω ∈ T is not
sufficient - for p = 1 the last statement holds true iff s ∈ R, while
for (s, p) ∈ G there is |s| ≤ 2.
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We have the following Schwarz Lemma for G.

Theorem (Agler, Young, 2001)

Let λ ∈ D, (s, p) ∈ G. The following conditions are equivalent:
1 There exists an H ∈ O(D,G) such that H(0) = 0,
H(λ) = (s, p);

2 |s| < 2 and 2|s−ps|+|s2−4p|
4−|s|2 ≤ |λ|;

3
∣∣|λ|2s− ps∣∣+ |p|2 + (1− |λ|2) |s|

2

4 − |λ|
2 ≤ 0;

4 |s| ≤ 2
1−|λ|2 (|λ||1− pω2| −

∣∣|λ|2 − pω2
∣∣) for any ω ∈ T with

s = |s|ω.
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Observe that if F ∈ O(D,Σ2) solves the spectral NP problem (with
k = 2), then H := π ◦F is an analytic map from D to G, such that

H(λj) = π(Wj), j = 1, . . . , n.

The problem of conversing the above claim is a little bit more
subtle. Namely, we have

Theorem (Agler, Young, 2000)

Let (λj ,Wj)
n
j=1 be as in spectral NP problem (with k = 2).

Assume additionally that either all or none of the Wj ’s are scalar
matrices. The following conditions are equivalent:

1 There exists an F ∈ O(D,Σ2) with F (λj) = Wj , j = 1, . . . , n;
2 There exists an H ∈ O(D,G) with H(λj) = π(Wj),
j = 1, . . . , n.
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Sketch of proof. It only suffices to deliver the first conditions from
the second. Let H = (H1, H2) be as in the statement. There are
two cases to be considered.
Case 1. The Wj ’s are nonscalar. Then

Wj = P−1
j

[
0 1
−pj sj

]
Pj , j = 1, . . . , n,

where (sj , pj) = π(Wj) and Pj is some nonsingular matrix,
j = 1, . . . , n.
Observe that each Pj has a logarithm Lj . Let L be a matrix
polynomial with L(λj) = Lj , j = 1, . . . , n, and for our purpose it
suffices to put

F (λ) := e−L(λ)

[
0 1

−H2(λ) H1(λ)

]
eL(λ).
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Case 2. Wj = cjI2, j = 1, . . . , n. Then H(λj) = (2cj , c
2
j ) and

|2cj | ≤ 2, |c2
j | ≤ 1. If now some of the cj ’s lies on the unit circle,

then by the maximum principle all of the Wj ’s are equal and we
may choose F to be a constant function. In the remaining case
observe that ‖H1‖∞ ≤ 2 and putting F (λ) := 1

2H1(λ)I2 finishes
the proof.
The assumption concerning the structure of the data matrices is
essential. Indeed, we have

Example

Let λ1 = 0, λ2 = β ∈ (0, 1), W1 = 0, and W2 =
[

0 1
0 2β

1+β

]
. Using

[Agler, Young, 2001] one can check that the function
H(λ) =

(
2λ(1−β)

1−βλ , λ(λ−β)
1−βλ

)
fulfills the second condition of the

theorem. However, there is no F as in the first one.
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To see this, suppose there is such an F . Then we may write
F (λ) = λG(λ). By theorem of Vesentini, the function λ 7→ r(G(λ))
is subharmonic. Using now the maximum principle one gets

sup
|λ|≤t

r(G(λ)) = sup
|λ|=t

1

t
r(F (λ)) ≤ 1

t
,

for t ∈ (0, 1). Therefore G ∈ O(D,Σ2). On the other hand, the
eigenvalues of G(β) are 0 and 2

1+β > 1, which is nonsense.

The importance of the above example lies in the fact, that is shows
that the spectral NP problem can be ill-posed, meaning it can
admit no solution. We shall discuss this issue later more detailed.
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As we have seen, the interpolation into G is equivalent to the
interpolation into Σ2, unless one of the data matrices is scalar,
while the second is not. However, in the latter case the
interpolation into Σ2 is equivalent to interpolation into G with
some differential condition.

Theorem (Agler, Young, 2000)

Let λ1, λ2 ∈ D, W1,W2 ∈ Σ2, where W1 = cI2 and W2 is
nonscalar. The following statements are equivalent

1 there exists an F ∈ O(D,Σ2) such that F (λj) = Wj , j = 1, 2;
2 there exists an H ∈ O(D,G) such that H(λj) = π(Wj),
j = 1, 2, and H ′2(λ1) = cH ′1(λ1).
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Sketch of proof. Let an F as in the first condition. Then all
coefficients of the matrix function F − cI2 vanish at λ1, which
yields det(F − cI2) has a zero of order at least 2 at λ1. We define

H := π ◦ F

and simple calculation reveals it is good for our purpose.
The other implication is a little bit more complicated. Let an H be
as in the second statement. We know that

W2 = P−1

[
0 1
−p s

]
P,

where (s, p) = π(W2) and P is nonsingular. We have three cases to
consider.
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Case 1. c = 0. Then we may write

H2(λ) = (λ− λ1)g(λ),

where g is analytic on D and g(λ1) = 0. Define

F (λ) = P−1

[
0 λ−λ1

λ2−λ1
−(λ2 − λ1)g(λ) H1(λ)

]
P.

Using the fact that the characteristic polynomial of F (λ) is

z2 −H1(λ)z +H2(λ)

and that H(λ) ∈ G, one easily verifies that F fulfills the first
statement.
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Case 2. c ∈ D. Let

h = Bc ◦H : D→ G, W̃2 = µc(W2),

where Bc(z + w, zw) = (bc(z) + bc(w), bc(z)bc(w)), z, w ∈ D,
bc(λ) = λ−c

1−c̄λ , and µc(A) := (A− cI2)(I2 − c̄A)−1. We have

π(W̃2) = Bc(s, p) = h(λ2),

h(λ1) = Bc(2c, c
2) = (0, 0).

Also, h is analytic and

h2 =
H2 − cH1 + c2

1− c̄H1 + c̄2H2
,

which yields h′2(λ1) = 0. Making use of Case 1, we find an
h̃ ∈ O(D,Σ2) with h̃(λ1) = 0 and f̃(λ2) = W̃2. It is now enough
to put F := µ−c ◦ h̃.
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Case 3. c ∈ T. Then, since H(λ1) = (2c, c2), by the maximum
principle we conclude that H1 and H2 are constant. Therefore,
trW2 = 2c, detW2 = c2. Furthermore,

W2 = R−1

[
c 1
0 c

]
R

with a nonsingular R. To the end we are looking out for, it suffices
to choose an analytic g of D with g(λ1) = 0 and g(λ2) = 1, and
put

F (λ) = R−1

[
c g(λ)
0 c

]
R.
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Theorem (Agler, Young, 2000)

Let λ1, λ2 ∈ D and W1,W2 ∈ Σ2, where W1 = cI2 for a c ∈ D.
Then there exists an F ∈ O(D,Σ) such that F (λj) = Wj , j = 1, 2,
iff

r(µc(W2)) ≤
∣∣∣∣ λ1 − λ2

1− λ2λ1

∣∣∣∣ =: m(λ1, λ2).

Observe that the last condition is equivalent to saying that

max

{∣∣∣∣ ξ1 − c
1− ξ̄1c

∣∣∣∣ , ∣∣∣∣ ξ2 − c
1− ξ̄2c

∣∣∣∣} ≤ m(λ1, λ2),

where ξ1, ξ2 are the eigenvalues of W2.
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Theorem (Agler, Young, 2000)

Let β ∈ D∗ and W1,W2 ∈ Σ2. Assume that W1 has a unique
eigenvalue, say c ∈ D. Put (s, p) = π(W2).

1 If both or neither of the Wj ’s are scalar matrices, then there
exists an F ∈ O(D,Σ2) with F (0) = W1, F (β) = W2 iff
2|s−sp−2c(1−|p|2)+c2(s−sp)|+(1−|c|2)|s2−4p|

|2−cs|2−|s−2cp|2 ≤ |β|.
2 If W1 is scalar, while W2 is not, then an F as above exists iff

2|β||(−2cp+ (1 + |c|2)s− 2c)(1− cs+ c2p)

− |β|−2(−2pc+ (1 + |c|2)s− 2c)(p− cs+ c2)|
+ (1− |c|2)2|s2 − 4p|+ 4(1− |β|2)|1− cs+ c2p|2

≤ (1− |c|2)(|2− cs|2 − |s− 2cp|2).
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Theorem (Agler, Young, 2000)

Let λ1, λ2 ∈ D,W ∈ Σ2, and c ∈ T. Then, there exists an
F ∈ O(D,Σ2) such that F (λ1) = cI2, F (λ2) = W iff c is the only
eigenvalue of W .
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Let F be a solution of spectral NP problem (with k = 2 and
arbitrary n). Put (sj , pj) = π(Wj), j = 1, . . . , n. For any ω ∈ T
and t ∈ (0, 1), the composition

Φω ◦ π ◦ tF

is an analytic self map of D which sends λj to
Φω(tsj , t

2pj) =
2ωt2pj−tsj

2−ωtsj , j = 1, . . . , n. Hence, by Pick’s theorem,[
1− Φω(tsi, t

2pi)Φω(tsj , t
2pj)

1− λ̄iλj

]n
i,j=1

≥ 0.

Conjugating the above matrix by [(2− ωtsj)δji]ni,j=1 (δji stands for
the Kronecker delta) and putting α = tω we have delivered the
following necessary condition for the solvability of a 2× 2 spectral
NP problem.
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Theorem (Agler, Young, 1999)

Let F be a solution of spectral NP problem (with k = 2 and
arbitrary n). Put (sj , pj) = π(Wj), j = 1, . . . , n. Then for any
α ∈ D we have[

(2− αsi)(2− αsj)− |α|2(2αpi − si)(2αpj − sj)
1− λ̄iλj

]n
i,j=1

≥ 0.

In general, the condition given above is not sufficient for the
solvability of the 2× 2 spectral NP problem as the following
example shows.
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Let r ∈ (0, 1) and let

h(λ) =

(
2(1− r) λ2

1 + rλ3
,
λ(λ3 + r)

1 + rλ3

)
.

Let λ1, λ2, λ3 ∈ D be any three distinct points and let
h(λj) = (sj , pj), j = 1, 2, 3. Then, using (Agler, Lykova, Young,
2012), one can prove that in any neighbourhood of (s1, s2, s3) in
(2D)3 there exists a point (s′1, s

′
2, s
′
3) such that (s′j , pj) ∈ G, the

interpolation data

λj 7→ (s′j , pj), j = 1, 2, 3,

satisfy the necessary condition of the Theorem, and yet there is no
function H ∈ O(D,G) such that H(λj) = (s′j , pj), j = 1, 2, 3.
In the case n = k = 2 however, the condition in the Theorem is
also sufficient for the solvability of spectral NP problem.
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Theorem (Agler, Young, 2004)

Let λ1, λ2 ∈ D, let W1,W2 ∈ Σ2 be nonscalar, and let
(sj , pj) = π(Wj), j = 1, 2. The following statements are equivalent

1 there exists an F ∈ O(D,Σ2) such that F (λj) = Wj , j = 1, 2;

2 maxω∈T

∣∣∣ (s2p1−s1p2)ω2+2(p2−p1)ω+s1−s2
(s1−s̄2p1)ω2−2(1−p1p̄2)ω+s̄2−s1p̄2

∣∣∣ ≤ m(λ1, λ2);

3 for all ω ∈ T the matrix[
(2− ωsi)(2− ωsj)− (2ωpi − si)(2ωpj − sj)

1− λ̄iλj

]n
i,j=1

is nonnegative semidefinite.
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Sketch of proof. Recall that for a domain Ω ⊂ Ck the Lempert
function lΩ : Ω2 → R+ is defined as

lΩ(z1, z2) := inf m(λ1, λ2),

where infimum is taken over all λ1, λ2 ∈ D such that there exists an
h ∈ O(D,Ω) sending λj to zj , j = 1, 2.
After (Agler, Young, 2004), we define the Carathéodory distance
CΩ : Ω2 → R+ by

CΩ(z1, z2) := supm(f(z1), f(z2)),

where the supremum is taken over all f ∈ O(Ω,D), i.e. we omit the
tanh−1 on the right-hand side.
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Let zj = (sj , pj) ∈ G.
(1)⇔(2). We only have to show that the inequality in (2) is
equivalent to the existence of an H ∈ O(D,G) such that
H(λj) = zj , j = 1, 2. By definition of the Lempert function, such
an H exists iff lG(z1, z2) ≤ m(λ1, λ2). Using (Agler, Young, 2004),
we get

lG(z1, z2) = CG(z1, z2) = max
ω∈T

m(Φω(z1),Φω(z2))

= max
ω∈T

∣∣∣∣ (s2p1 − s1p2)ω2 + 2(p2 − p1)ω + s1 − s2

(s1 − s̄2p1)ω2 − 2(1− p1p̄2)ω + s̄2 − s1p̄2

∣∣∣∣ ≤ m(λ1, λ2).

(2)⇔(3). By what we have just proved, the condition (2) is
equivalent to

max
ω∈T

m(Φω(z1),Φω(z2)) ≤ m(λ1, λ2).
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Using the Schwarz-Pick lemma we conclude that the above
inequality holds true iff for any ω ∈ T there is a function
fω ∈ O(D,D) with fω(λj) = Φω(zj), j = 1, 2. This latter, by
Pick’s theorem is equivalent to[

1− Φω(zi)Φω(zj)

1− λ̄iλj

]2

i,j=1

≥ 0,

from which one easily derives the conclusion.

Remark
If we drop the structural assumption about the data matrices, we
also have a solvability criterion: if both Wj ’s are scalar, then the
problem reduces to the one-dimensional one. Also, we already know
the required criterion in the case W1 = cI2 and W2 nonscalar.
Recall that then the corresponding spectral NP problem is solvable
iff r(µc(W2)) ≤ m(λ1, λ2).

Arkadiusz Lewandowski, Paweł Zapałowski Some Analysable Instances of µ-synthesis



The µ-synthesis problem
The spectral NP problem (bidisc)

The structured NP problem (tetrablock)
The ALY problem (pentablock)

The CF problem

Dimension reduction
Interpolation for G (n = 2)
Lifting
Partial solution and the ill-conditioning (n = 2)
The arbitrary k case

Observe that the spectral NP problem never has a unique solution.
For if F is such a solution, then so is P−1FP for any
P ∈ O(D,Ck×k) such that the values of P are nonsingular
matrices and P (λj) is a scalar matrix for each interpolant λj .
On the other hand, the solution of the corresponding problem of
the interpolation into G can be unique. In fact, such a solution
(provided it exists) is unique iff each pair of distinct points of G lies
on a unique complex geodesic of G, and the latter is true by (Agler,
Young, 2004) and (Agler, Young, 2006).
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We have already mentioned that the spectral NP problem can be
ill-posed. In fact, it can admit no solution even if there are
arbitrarily close data admitting a solution.

Example

Let λ1 = 0, λ2 = β ∈ (0, 1), α ∈ C,

W1(α) =

[
0 α
0 0

]
, W2 =

[
0 1

0 2β
1+β

]
.

We already know that the case α = 0 has no solution. On the other
hand, for α 6= 0, the assumptions of Theorem are fulfilled, and

H(λ) =

(
2λ(1− β)

1− βλ
,
λ(λ− β)

1− βλ

)
satisfies its second condition.
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Nevertheless, we can give a precise answer to the question: for
which η ∈ D there is an F ∈ O(D,Σ2) such that

F (0) = W1(α), F (η) = W2.

It is as follows:
1 If α 6= 0, then F exists iff |η| ≥ β.
2 If α = 0, then F exists iff |η| ≥ 2β

1+β .
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Currently, we glimpse at the difficulties which appear when passing
to the more general case, with arbitrary k.
There is an obvious way to generalize the symmetrized bidisc.
Namely, we define the open symmetrized polydisc (k ≥ 2)

Gk := {(σ1(z), . . . , σk(z)) : z ∈ Dk} ⊂ Ck,

where σj denotes the elementary symmetric polynomial in
z = (z1, . . . , zk) for j = 1, . . . , k. Along the same lines one defines
the closed symmetrized polydisc Gk.
As in the case k = 2, we can reduce the spectral NP problem to an
interpolation problem into Gk under some hypotheses on the target
matrices Wj . Namely, we need to assume that they are
nonderogatory (this means that each eigenvalue of Wj has
geometric multiplicity exactly one, i.e. the dimension of
corresponding eigenspace is one).

Arkadiusz Lewandowski, Paweł Zapałowski Some Analysable Instances of µ-synthesis



The µ-synthesis problem
The spectral NP problem (bidisc)

The structured NP problem (tetrablock)
The ALY problem (pentablock)

The CF problem

Dimension reduction
Interpolation for G (n = 2)
Lifting
Partial solution and the ill-conditioning (n = 2)
The arbitrary k case

In the case k = 2, a matrix A is nonderogatory exactly when it is
nonscalar. Also, we have used the fact that a matrix A is
nonderogatory iff it is similar to the companion matrix of its
characteristic polynomial (Horn, Johnson, 1990).

Two basic problems appear while discussing the relations between
the interpolation into Σk and into Gk.

1 For k > 2 there is no such a simple characterization of
nonderogatory matrices (cf. (Nikolov, Pflug, Thomas, 2010)
for the case k = 3).

2 It is not true that lGk = CGk for k > 2 (Nikolov, Pflug,
Zwonek, 2007).
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In the engineering literature the space E is usually taken to be
given by a block diagonal structure. If we confine ourselves to
k = 2 it is natural to study the space of diagonal matrices

E = span{[ 1 0
0 0 ] , [ 0 0

0 1 ]}.
Put

C2×2 3 A = [aij ]
π7−→ (a11, a22,detA) ∈ C3

and let E := π(B2) denote the tetrablock.
E is a polynomially convex, C-convex and pseudoconvex
bounded domain in C3.
E is starlike about 0, non-circular but (1, 0, 1)-, (0, 1, 1)- and
(1, 1, 2)-balanced.
E ∩ R3 is a regular tetrahedron with vertices (1, 1, 1),
(1,−1,−1), (−1, 1,−1), and (−1,−1, 1).
lE = cE although E cannot be exhausted by domains
biholomorphic to convex ones.
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E = π(Ωo
µE

), E = π(ΩµE ), π−1(E) = ΩµE .

But the true reason that E is amenable to analysis is that, as in the
case of G2, there is 1-parameter family of rational functions

Ψη(z1, z2, z3) :=

{
ηz3−z2
ηz1−1 , if ηz1 6= 1

z2, if z1z2 = z3

,

where η ∈ C, (z1, z2, z3) ∈ C3 is such that ηz1 6= 1 or z1z2 = z3.

Theorem (Abouhajar, White, Young, 2007)

Let z ∈ C3. Then the following are equivalent
1 z ∈ E;
2 |Ψη(z)| < 1 for any η ∈ D.

In particular, Ψη ∈ O(E,D) for any η ∈ D.

Arkadiusz Lewandowski, Paweł Zapałowski Some Analysable Instances of µ-synthesis

The µ-synthesis problem
The spectral NP problem (bidisc)

The structured NP problem (tetrablock)
The ALY problem (pentablock)

The CF problem

Dimension reduction
Interpolation for E (n = 2)
Lifting
Partial solution (n = 2)
The ill-conditioning (n = 2)

Solution of the interpolation problem for E and n = 2 is the
following Schwarz Lemma for E

Theorem (Abouhajar, White, Young, 2007)

Let λ ∈ D∗, z = (a, b, p) ∈ E. Then the following are equivalent
1 there is h ∈ O(D,E), with h(0) = 0, h(λ) = z;
2 there is h ∈ O(D,E), with h(0) = 0, h(λ) = z;

3 max
{
|a−b̄p|+|ab−p|

1−|b|2 , |b−āp|+|ab−p|
1−|a|2

}
≤ |λ|;

4 either
|b| ≤ |a| and |a−b̄p|+|ab−p|1−|b|2 ≤ |λ| or
|a| ≤ |b| and |b−āp|+|ab−p|1−|a|2 ≤ |λ|;

5 there is H ∈ O(D,B2) with H(0) ∈ π−1(0), H(λ) ∈ π−1(z).
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The interpolation problems for ΩµE and E are equivalent in the
following sense.

Theorem (Abouhajar, White, Young, 2007)

Let λj ∈ D, λi 6= λj whenever i 6= j, Wj ∈ Ωo
µE

(resp. Wj ∈ ΩµE ),
j = 1, . . . , n. Then the following are equivalent

1 there is F ∈ O(D,Ωo
µE

) (resp. F ∈ O(D,ΩµE )) with
F (λj) = Wj , j = 1, . . . , n;

2 there is h ∈ O(D,E) (resp. h ∈ O(D,E)) with
h(λj) = π(Wj), j = 1, . . . , n, and, if Wj = [wjst] is diagonal,
then

h′3(λj) = wj22h
′
1(λj) + wj11h

′
2(λj).

On putting together three previous theorems one get the partial
solution of the structured Nevanlinna-Pick problem for n = 2.
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Theorem (Abouhajar, White, Young, 2007)

Let λ ∈ D∗, A1, A2 ∈ ΩµE , where π(A1) = 0, π(A2) = (a, b, p),
and A2 /∈ E. Then the following are equivalent

1 there is F ∈ O(D,ΩµE ) with F (0) = A1, F (λ) = A2;

2

{
max

{
|a−b̄p|+|ab−p|

1−|b|2 , |b−āp|+|ab−p|
1−|a|2

}
≤ |λ|, if A1 6= 0(

a
λ ,

b
λ ,

p
λ2

)
∈ E, if A1 = 0

.

The solvability of structured Nevanlinna-Pick problem is
equivalent to the calculation of lE.
If z = (a, b, p) ∈ E then
lE(0, z) = max

{
tanh−1 |a−b̄p|+|ab−p|

1−|b|2 , tanh−1 |b−āp|+|ab−p|
1−|a|2

}
.

What about lE(w, z) for w 6= 0? It suffices to consider
w = (0, 0, α), 0 < α < 1.
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Using the form of automorphisms of E and the previous theorems
we may get the following

Theorem (Abouhajar, White, Young, 2007)

Let λ1, λ2 ∈ D, λ1 6= λ2, A1, A2 ∈ ΩµE , where π(A1) = z,
π(A2) = w, and A1 is triangular. Then the following are equivalent

1 there is F ∈ O(D,ΩµE ) with F (λ1) = A1, F (λ2) = A2;

2 max {α(z, w), α(z̃, w̃)} ≤
∣∣∣ λ1−λ2

1−λ1λ̄2

∣∣∣, where
α(z, w) :=

(1−|z1|2)β(w)+|γ(w)−δ(w)z1+ε(w)z21 |
|1−z̄1w1|2−|w2−z̄1w3|2 ,

β(w) = |w3 − w1w2|,
γ(w) = w1 − w̄2w3,
δ(w) = 1 + |w1|2 − |w2|2 − |w3|2,
ε(w) = w̄1 − w2w̄3,
x̃ = (x2, x1, x3) for any x = (x1, x2, x3) ∈ C3.
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Take in the second last theorem above (a, b, p) = (1
2 ,

1
2 ,

1
2). Since

π(A1) = 0 there is ζ ∈ C such that

A1 =

[
0 ζ
0 0

]
or A1 =

[
0 0
ζ 0

]
.

Then there is Fζ ∈ O(D,ΩµE ) with Fζ(0) = A1, Fζ(λ) = A2 iff

|λ| ≥

{
2
3 , if A1 6= 0
1√
2
, if A1 = 0

.

It follows that if 2
3 < |λ| <

1√
2
then Fζ cannot be locally bounded

as ζ → 0. For such λ, if ζ is close to zero then the solutions of the
interpolation problem are very sensitive to small changes in ζ.

Arkadiusz Lewandowski, Paweł Zapałowski Some Analysable Instances of µ-synthesis



The µ-synthesis problem
The spectral NP problem (bidisc)

The structured NP problem (tetrablock)
The ALY problem (pentablock)

The CF problem

Dimension reduction
Interpolation for P (n = 2)
Lifting

Recently Agler, Lykova, and Young started the investigation of the
µ-synthesis problem related to the space

E = span {I2, [ 0 1
0 0 ]} ,

another natural choice of E. Put

C2×2 3 A = [aij ]
π7−→ (a21, trA,detA) ∈ C3,

and let P := π(B2) denote the pentablock.
P is a polynomially convex, non-convex bounded domain.
P is starlike about 0, non-circular but (1, 0, 0)- and
(k, 1, 2)-balanced, k ≥ 0.
P ∩ R3 in a convex body bounded by five faces, comprising
two triangles, an ellipse and two curved surfaces, with four
vertices (0,−2, 1), (0, 2, 1), (1, 0,−1), and (−1, 0,−1).
P = π(Ωo

µE
), P = π(ΩµE ), π−1(P) = ΩµE .
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Again, there is 1-parameter family of rational functions (η ∈ D)

Ψη(z) :=
(1− |η|2)z1

1− ηz2 + η2z3
, z = (z1, z2, z3) ∈ C3, 1 6= ηz2 − η2z3.

Theorem (Agler, Lykova, Young, 2014)

Let a ∈ C, s = λ1 + λ2, p = λ1λ2, where λ1, λ2 ∈ D. Put
z = (a, s, p). Then the following are equivalent

1 z ∈ P;

2 |a| <
∣∣∣∣1− sβ̄/2

1+
√

1−|β|2

∣∣∣∣, where β := s−s̄p
1−|p|2 ;

3 |a| < 1
2

(
|1− λ1λ̄2|+

√
(1− |λ1|2)(1− |λ1|2)

)
;

4 supη∈D |Ψη(z)| < 1.
In particular, Ψη ∈ O(P,D) for any η ∈ D.
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What is the Schwarz Lemma for P, i.e for which pairs λ ∈ D∗ and
z ∈ P does there exist h ∈ O(D,P) such that h(0) = 0 and
h(λ) = z? A necessary condition is the following

Theorem (Agler, Lykova, Young, 2014)

Let λ ∈ D∗ and z = (a, s, p) ∈ P. If h ∈ O(D,P) satisfies h(0) = 0
and h(λ) = z, then

max


2|s− ss̄p|+ |s2 − 4p|

4− |s|2
,

|a|∣∣∣∣1− sβ̄/2

1+
√

1−|β|2

∣∣∣∣
 ≤ |λ|,

where
β =

s− s̄p
1− |p|2

.
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On dividing through λ the above inequality and letting λ→ 0 we
obtain an infinitesimal necessary condition.

Corollary (Agler, Lykova, Young, 2014)

If h = (h1, h2, h3) ∈ O(D,P) satisfies h(0) = 0, then

|h′1(0)| ≤ 1,
1

2
|h′2(0)|+ |h′3(0)| ≤ 1.

Is there a converse? Is it the case that if

|z1| ≤ 1,
1

2
|z2|+ |z3| ≤ 1 (2)

then there is h = (h1, h2, h3) ∈ O(D,P) such that h(0) = 0 and
h′(0) = (z1, z2, z3)?
The answer is no.
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Take z1 = 1, 0 < z3 < 1, z2 = 2(1− z3). The inequalities (2) hold.
Suppose there is h = (h1, h2, h3) ∈ O(D,P) such that h(0) = 0
and h′(0) = (z1, z2, z3). Since h1 ∈ O(D,D), h1(0) = 0, and
h′1(0) = 1 we infer that h1 = idD. Since 1

2 |z2|+ |z3| = 1, the
description of complex geodesics of G2 tells us that

(h2, h3)(λ) =
λ

1 + z3λ
(2(1− z3), λ+ z3), λ ∈ D,

is unique function ϕ ∈ O(D,G2) with ϕ(0) = 0 and
ϕ′(0) = (z2, z3). However, h(D) 6⊂ P. Indeed, h(1) = (1, 2ξ, 1),
where ξ = 1−z3

1+z3
∈ (0, 1). For the point (s, p) = (2ξ, 1) we have

β = ξ, and so∣∣∣∣∣1− sβ̄/2

1 +
√

1− |β|2

∣∣∣∣∣ = 1− ξ2

1 +
√

1− ξ2
=
√

1− ξ2 < 1.

Hence h(1) = (1, 2ξ, 1) /∈ P.
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The lifting problem for O(D,P) is delicate, as the following
examples show.

Example (Agler, Lykova, Young, 2014)

Let h(λ) = (λ, 0, λ), λ ∈ D. This h ∈ O(D,P) lifts to Schur lifting
H ∈ O(D,B2) given by

H(λ) =

[
0 −1
λ 0

]
.

Here H(λ) /∈ B2 for any λ ∈ D, since ‖H(λ)‖ = 1.
On the other hand, there is non-analytic lifting H : D→ B2 of h
given by

H(λ) =

[
i
√

1− |λ|ζ −λ
λ −i

√
1− |λ|ζ

]
,

where ζ is a square root of λ.
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Example (Agler, Lykova, Young, 2014)

Let h(λ) = (λ2, 0, λ), λ ∈ D. This h ∈ O(D,P) has no analytic
lifting.
Indeed, suppose H ∈ O(D,C2×2) is an analytic lifting of h. We can
write

H(λ) =

[
−η(λ) g(λ)
λ2 η(λ)

]
, λ ∈ D,

for some g, η ∈ O(D,C). Since detH(λ) = λ, we must have

(η(λ))2 = −λ− λ2g(λ), λ ∈ D.

This is a contradiction, since the right hand side has a simple zero
at 0, while the left hand side has a zero of multiplicity at least 2.

These examples point to the following result.
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Proposition (Agler, Lykova, Young, 2014)

A function h = (a, s, p) ∈ O(D,P) has analytic lifting iff there is
no α ∈ D such that, for some odd positive integer n,

h(α) ∈ R := {(0, 2λ, λ2) : λ ∈ C},
α is a zero of s2 − 4p of multiplicity n, and
α is a zero of a of multiplicity greater than n.

Example (Agler, Lykova, Young, 2014)

Let h(λ) = (1
2 , 0, λ), λ ∈ D. This h ∈ O(D,P) has an analytic

lifting but no Schur lifting.

The upshot of the three examples and proposition is that the
µ-synthesis problem for µE and the interpolation problem for
O(D,P) are quite closely related, but that the rich function theory
of O(D,B2) may not be helpful for their solution.
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The structured NP problem (tetrablock)
The ALY problem (pentablock)
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The spectral CF problem (bidisc)
The structured CF problem (tetrablock)

Problem (The spectral Carathéodory-Fejér problem)

Given V0, . . . , Vn ∈ Ck×k, V0 ∈ Σk, construct an F ∈ O(D,Σk)
such that

F (j)(0) = Vj , j = 0, . . . , n.

For k = 1 it reduces to the classical Carathéodory-Fejér problem.

Theorem (Carathéodory, Fejér, 1911)

Let zj ∈ C, j = 0, 1, . . . , n, z0 ∈ D. There is an F ∈ O(D,D) with
F (j)(0) = zj , j = 0, 1, . . . , n iff Toeplitz matrix T = [tij ]

n
i,j=0,

where

tij :=

{
0, if i− j < 0

ci−j , if i− j ≥ 0
,

is a contraction, i.e. ‖T‖ ≤ 1.
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For k = 2, n = 1 we have the following

Theorem (Huang, Marcantognini, Young, 2006)

Let Vj = [vjik]
2
i,k=1 ∈ C2×2, j = 0, 1, where V0 ∈ Σo

2 is nonscalar.
The following are equivalent

1 there is an F ∈ O(D,Σo
2) with F (0) = V0, F ′(0) = V1;

2 maxω∈T

∣∣∣ (s1p0−s0p1)ω2+2ωp1−s1
ω2(s0−s̄0p0)−2ω(1−|p0|2)+s̄0−s0p̄0

∣∣∣ ≤ 1, where
(s0, p0) = π(V0), s1 = trV1, and

p1 =

∣∣∣∣v0
11 v1

12

v0
21 v1

22

∣∣∣∣+

∣∣∣∣v1
11 v0

12

v1
21 v0

22

∣∣∣∣ .
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Problem (The structured Carathéodory-Fejér problem)

Given V0, . . . , Vn ∈ C2×2, V0 ∈ ΩµE , construct an F ∈ O(D,ΩµE )
such that

F (j)(0) = Vj , j = 0, . . . , n.

Again the problem can be reduced to an interpolation problem for
E, but the resulting problem has only been solved in an exceedingly
special case.

Theorem (Young, 2008)

Let V0 =
[

0 ζ
0 0

]
, ζ ∈ C, and let V1 = [vij ]

2
i,j=1 ∈ C2×2 be

nondiagonal. The following are equivalent
1 there is an F ∈ O(D,ΩµE ) with F (0) = V0, F ′(0) = V1;
2 max{|v11|, |v22|}+ |ζv21| ≤ 1.
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Thank You!
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