The Complex Structured Singular Value Part 8 - Relating μ and $\inf_{D \in \mathbf{D}} \bar{\sigma}(D^{\frac{1}{2}}MD^{-\frac{1}{2}})$ based on paper by A.Pacard and J.Doyle Marta Pietrzyk Będlewo, June 2014

We want to charakterize the case when

$$\bar{\sigma}(M) = \inf_{D \in \mathbf{D}} \bar{\sigma}(D^{\frac{1}{2}}MD^{-\frac{1}{2}})$$

Let $M \in \mathbb{C}^{n \times n}$ and let take its singular value decomposition

$$M = \sigma_1 U V^* + U_2 \Sigma_2 V_2^*$$

where σ_1 is the maximum singular value of M with multiplicity $r, U, V \in \mathbb{C}^{n \times r}$, $U_2, V_2 \in \mathbb{C}^{n \times (n-r)}, U^*U = V^*V = I_r, U_2^*U_2 = V_2^*V_=I_{n-r}, U^*U_2 = 0, V^*V_2 = 0$ and $\Sigma_2 \in \mathbb{R}^{(n-r) \times (n-r)}$ is nonnegative and diagonal.

Let define

$$\mathbf{Z} := \{ D - \tilde{D} : D, \tilde{D} \in \mathbf{D} \}.$$

Elements of ${\bf Z}$ are of the form

$$diag[Z_1, \ldots, Z_S, z_{S+1}I_{m_1}, \ldots, z_{S+F-1}I_{M_{F-1}}, 0_{m_F}]$$

where for $i \leq S$, $Z_i = Z_i^* \in \mathbb{C}^{r_i \times r_i}$, and for $j \leq F - 1$, $z_{S+j} \in \mathbb{R}$. Let partition U and V compatibly with Δ as

$$U = \begin{bmatrix} A_1 \\ \vdots \\ A_S \\ E_1 \\ \vdots \\ E_F \end{bmatrix}, V = \begin{bmatrix} B_1 \\ \vdots \\ B_S \\ H_1 \\ \vdots \\ H_F \end{bmatrix},$$

where $A_i, B_i \in \mathbb{C}^{r_i \times r}, E_i, H_i \in \mathbb{C}^{m_i \times r}$.

Let define $\nabla_M \subset \mathbf{Z}$ by

 $\nabla_M := \{ diag[P_1^{\eta}, \dots, P_S^{\eta}, p_{S+1}^{\eta} I_{m_1}, \dots, p_{S+F-1}^{\eta} I_{m_{F-1}}, 0_{m_F}] : \eta \in \mathbb{C}^r, ||\eta|| = 1 \},$ where

$$P_i^{\eta} := A_i \eta \eta^* A_i^* - B_i \eta \eta^* B_i^*, p_{S+j}^{\eta} := \eta^* (E_j^* E_j - H_j^* H_j) \eta.$$

THEOREM 1. $\bar{\sigma}(M) = \inf_{D \in \mathbf{D}} \bar{\sigma}(D^{\frac{1}{2}}MD^{-\frac{1}{2}})$ if and only if $0 \in co(\nabla_M)$.

THEOREM 2. The following conditions are equivalent

- (1) $0 \in \nabla_M$;
- (2) there exists $\eta \in \mathbb{C}^r$, $||\eta|| = 1$ and $Q \in \mathbf{Q}$ such that $QU\eta = V\eta$;
- (3) there exists $\xi \in \mathbb{C}^n$, $||\xi|| = 1$ and $Q \in \mathbf{Q}$ such that $QU\xi = \sigma_1\xi$;
- (4) $\sigma_1 = \bar{\sigma}(M) = \mu_\delta(M).$

Dowód. (1) \Rightarrow (2) If $0 \in \nabla_M$, for some $\eta \in \mathbb{C}^r$, $||\eta|| = 1$ we have

$$(*)A_{i}\eta\eta^{*}A_{i}^{*} - B_{i}\eta\eta^{*}B_{i}^{*} = 0, i \leq S$$
$$(**)\eta^{*}(E_{j}^{*}E_{j} - H_{j}^{*}H_{j})\eta = 0, j \leq F - 1.$$
$$\begin{bmatrix} x_{1} \end{bmatrix} \begin{bmatrix} y_{1} \end{bmatrix}$$

Let denote $A_i\eta = X = \begin{bmatrix} \vdots \\ x_{r_i} \end{bmatrix}$ and $B_i\eta = Y = \begin{bmatrix} \vdots \\ y_{r_i} \end{bmatrix}$. Using this notation, (*) has the following form $XX^* = YY^*, i \leq S$. Thus $|x_i|^2 = |y_i|^2$ for $i \leq S$ and $x_l \bar{x}_k = y_l \bar{y}_k$ for $l, k \leq S$. We may assume that $x_1 \neq 0$. Then $x_k = \frac{|\bar{y}_1|}{|\bar{x}_1|}y_k$, so for $k \leq S$ there is a phase $e^{k\theta_j}$ such that $e^{k\theta_j}A_k\eta = B_k\eta$.

(**) means that for $j \leq F - 1$,

$$<\eta, E_j^*E_j\eta>=<\eta, H_j^*H_j\eta>,$$

thus

$$\langle E_j\eta, E_j\eta \rangle = \langle H_j\eta, H_j\eta \rangle$$

and that is equivalent to $||E_j|| = ||H_j||$. So there exists a unitary matrix Q_j such that $Q_j E_j \eta = H_j \eta$. Finally, since $||U\eta|| = ||V\eta||$ we must have $||E_F\eta|| = ||H_F\eta||$. This gives a unitary matrix Q_F such that $Q_F E_F \eta = H_F \eta$. Arranging the phases and Q_S in a block diagonal matrix gives (2).

 $(2) \Rightarrow (1)$ Very similar to the proof $(1) \Rightarrow (2)$.

(2) \Rightarrow (3) Since $M = \sigma_1 UV^* + U_2 \Sigma_2 V_2^*$, we have $QMV\eta = \sigma_1 QU\eta = \sigma_1 V\eta$. $\xi = V\eta$ satisfies (3).

(3) \Rightarrow (2) Since $M = \sigma_1 UV^* + U_2 \Sigma_2 V_2^*$, $QM = \sigma_1 QUV^* + QU_2 \Sigma_2 V_2^*$. Let denote $U_2 = [U \quad U_1]$, $V_2 = [V \quad V_1]$, $\Sigma = diag[\sigma_1 I_r, \Sigma_2]$ and $\tilde{\eta} := V_2^* \xi$. Then $U_2^* M = \Sigma V_2^*$. From (3), $||M\xi|| = \sigma_1$. Thus $\sigma_1^2 = ||U_2^* M\xi||^2 = ||\Sigma V_2^*\xi||^2 = ||\Sigma\eta||^2 = \sigma_1^2 |\eta_1|^2 + \ldots + \sigma_n^2 |\eta_n|^2 \leqslant \sigma_1^2 ||\eta||^2 = \sigma_1^2$. This means that for every $j, \sigma_j = \sigma_1$ or $\eta_j = 0$. Thus $\tilde{\eta} = [\eta \quad 0]$ for some $\eta \in \mathbb{C}^r$. This implies $V\eta = \xi$. Then we have

$$QU\eta = QUV^*\xi = \frac{1}{\sigma_1}QM\xi = \xi = V\eta.$$

(3) \Rightarrow (4) $QM\xi = \sigma_1\xi$ implies that

$$\sigma_1 \ge \mu_{\Delta}(M) = \max_{Q \in \mathbf{Q}} \rho(QM) \ge \rho(QM) \ge \sigma_1.$$

 $(2) \Rightarrow (3)$ Since

$$\max_{Q \in \mathbf{Q}} \rho(QM) = m u_{\Delta}(M) = \sigma_1,$$

 σ_1 is an eigenvalue of QM, which gives (3).

DEFINITION 1. We say that a block structure is μ -simple if for all $W \in \mathbb{C}^{n \times n}$, $0 \in co(\nabla_W)$ implies $0 \in \nabla_W$.

THEOREM 3. Let block structure Δ be μ -simple. Then, for every $M \in \mathbb{C}^{n \times n}$,

$$\mu_{\Delta}(M) = \inf_{D \in \mathbf{D}} \bar{\sigma}(D^{\frac{1}{2}}MD^{-\frac{1}{2}})$$

Dowód. Let $\beta = \inf_{D \in \mathbf{D}} \bar{\sigma}(D^{\frac{1}{2}}MD^{-\frac{1}{2}})$. Let D_k be a sequence in \mathbf{D} such that $\bar{\sigma}(D^{\frac{1}{2}}MD^{-\frac{1}{2}}) \longrightarrow \beta$, as $k \longrightarrow \infty$.

Denote $W_k = D^{\frac{1}{2}} M D^{-\frac{1}{2}}$. Since the sequence W_k is bounded, it has a convergent subsequence with limit W. By continuity of $\bar{\sigma}$ and μ_{Δ} , $\bar{\sigma}(w) = \beta$ and $\mu_{Delta}(M) = \mu_{Delta}(W)$. We claim that $0 \in co(\nabla_W)$. Suppose to the contrary that $0 \notin co(\nabla_W)$. Then, by Theorem 1., there exist $D \in \mathbf{D}$ end $\epsilon > 0$ such that $\bar{\sigma}(D^{\frac{1}{2}}WD^{-\frac{1}{2}}) = \beta - \epsilon$. Choose k so that $||W_k - W|| < \frac{\epsilon}{2||D^{\frac{1}{2}}||||D^{-\frac{1}{2}}||}.$

$$||D^{\frac{1}{2}}(W_k - W)D^{-\frac{1}{2}}|| < \frac{\epsilon}{2},$$

which yields

$$||D^{\frac{1}{2}}W_k D^{-\frac{1}{2}}|| < \beta - \frac{\epsilon}{2}$$

This contradicts that β was the infimum, thus indeed $0 \in co(\nabla_W)$. But Δ is μ -simple, so $0 \in \nabla_W$ and by Theorem 2. $\bar{\sigma}(W) = \mu_{\delta}(W)$. Finally we get $\mu_{\delta}(M) = \beta$ as desired.