The Complex Structured Singular Value
Part 8 - Relating μ and $\inf _{D \in \mathbf{D}} \bar{\sigma}\left(D^{\frac{1}{2}} M D^{-\frac{1}{2}}\right)$ based on paper by A.Pacard and J.Doyle

Marta Pietrzyk
Będlewo, June 2014

We want to charakterize the case when

$$
\bar{\sigma}(M)=\inf _{D \in \mathbf{D}} \bar{\sigma}\left(D^{\frac{1}{2}} M D^{-\frac{1}{2}}\right)
$$

Let $M \in \mathbb{C}^{n \times n}$ and let take its singular value decomposition

$$
M=\sigma_{1} U V^{*}+U_{2} \Sigma_{2} V_{2}^{*},
$$

where σ_{1} is the maximum singular value of M with multiplicity $r, U, V \in \mathbb{C}^{n \times r}$, $U_{2}, V_{2} \in \mathbb{C}^{n \times(n-r)}, U^{*} U=V^{*} V=I_{r}, U_{2}^{*} U_{2}=V_{2}^{*} V_{=} I_{n-r}, U^{*} U_{2}=0, V^{*} V_{2}=0$ and $\Sigma_{2} \in \mathbb{R}^{(n-r) \times(n-r)}$ is nonnegative and diagonal.

Let define

$$
\mathbf{Z}:=\{D-\tilde{D}: D, \tilde{D} \in \mathbf{D}\} .
$$

Elements of \mathbf{Z} are of the form

$$
\operatorname{diag}\left[Z_{1}, \ldots, Z_{S}, z_{S+1} I_{m_{1}}, \ldots, z_{S+F-1} I_{M_{F-1}}, 0_{m_{F}}\right]
$$

where for $i \leqslant S, Z_{i}=Z_{i}^{*} \in \mathbb{C}^{r_{i} \times r_{i}}$, and for $j \leqslant F-1, z_{S+j} \in \mathbb{R}$.
Let partition U and V compatibly with Δ as

$$
U=\left[\begin{array}{c}
A_{1} \\
\vdots \\
A_{S} \\
E_{1} \\
\vdots \\
E_{F}
\end{array}\right], V=\left[\begin{array}{c}
B_{1} \\
\vdots \\
B_{S} \\
H_{1} \\
\vdots \\
H_{F}
\end{array}\right],
$$

where $A_{i}, B_{i} \in \mathbb{C}^{r_{i} \times r}, E_{i}, H_{i} \in \mathbb{C}^{m_{i} \times r}$.
Let define $\nabla_{M} \subset \mathbf{Z}$ by

$$
\nabla_{M}:=\left\{\operatorname{diag}\left[P_{1}^{\eta}, \ldots, P_{S}^{\eta}, p_{S+1}^{\eta} I_{m_{1}}, \ldots, p_{S+F-1}^{\eta} I_{m_{F-1}}, 0_{m_{F}}\right]: \eta \in \mathbb{C}^{r},\|\eta\|=1\right\}
$$

where

$$
\begin{gathered}
P_{i}^{\eta}:=A_{i} \eta \eta^{*} A_{i}^{*}-B_{i} \eta \eta^{*} B_{i}^{*}, \\
p_{S+j}^{\eta}:=\eta^{*}\left(E_{j}^{*} E_{j}-H_{j}^{*} H_{j}\right) \eta .
\end{gathered}
$$

Theorem 1. $\bar{\sigma}(M)=\inf _{D \in \mathbf{D}} \bar{\sigma}\left(D^{\frac{1}{2}} M D^{-\frac{1}{2}}\right)$ if and only if $0 \in c o\left(\nabla_{M}\right)$.
Theorem 2. The following conditions are equivalent
(1) $0 \in \nabla_{M}$;
(2) there exists $\eta \in \mathbb{C}^{r},\|\eta\|=1$ and $Q \in \mathbf{Q}$ such that $Q U \eta=V \eta$;
(3) there exists $\xi \in \mathbb{C}^{n},\|\xi\|=1$ and $Q \in \mathbf{Q}$ such that $Q U \xi=\sigma_{1} \xi$;
(4) $\sigma_{1}=\bar{\sigma}(M)=\mu_{\delta}(M)$.

Dowód. (1) $\Rightarrow(2)$ If $0 \in \nabla_{M}$, for some $\eta \in \mathbb{C}^{r},\|\eta\|=1$ we have

$$
\begin{gathered}
(*) A_{i} \eta \eta^{*} A_{i}^{*}-B_{i} \eta \eta^{*} B_{i}^{*}=0, i \leqslant S \\
(* *) \eta^{*}\left(E_{j}^{*} E_{j}-H_{j}^{*} H_{j}\right) \eta=0, j \leqslant F-1 .
\end{gathered}
$$

Let denote $A_{i} \eta=X=\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{r_{i}}\end{array}\right]$ and $B_{i} \eta=Y=\left[\begin{array}{c}y_{1} \\ \vdots \\ y_{r_{i}}\end{array}\right]$. Using this notation, $(*)$ has the following form $X X^{*}=Y Y^{*}, i \leqslant S$. Thus $\left|x_{i}\right|^{2}=\left|y_{i}\right|^{2}$ for $i \leqslant S$ and $x_{l} \bar{x}_{k}=y_{l} \bar{y}_{k}$ for $l, k \leqslant S$. We may assume that $x_{1} \neq 0$. Then $x_{k}=\frac{\left|\bar{y}_{1}\right|}{\left|\bar{x}_{1}\right|} y_{k}$, so for $k \leqslant S$ there is a phase $e^{k \theta_{j}}$ such that $e^{k \theta_{j}} A_{k} \eta=B_{k} \eta$.
$(* *)$ means that for $j \leqslant F-1$,

$$
<\eta, E_{j}^{*} E_{j} \eta>=<\eta, H_{j}^{*} H_{j} \eta>
$$

thus

$$
<E_{j} \eta, E_{j} \eta>=<H_{j} \eta, H_{j} \eta>
$$

and that is equivalent to $\left\|E_{j}\right\|=\left\|H_{j}\right\|$. So there exists a unitary matrix Q_{j} such that $Q_{j} E_{j} \eta=H_{j} \eta$. Finally, since $\|U \eta\|=\|V \eta\|$ we must have $\left\|E_{F} \eta\right\|=\left\|H_{F} \eta\right\|$. This gives a unitary matrix Q_{F} such that $Q_{F} E_{F} \eta=H_{F} \eta$. Arranging the phases and Q_{S} in a block diagonal matrix gives (2).
$(2) \Rightarrow(1)$ Very similar to the proof $(1) \Rightarrow(2)$.
$(2) \Rightarrow(3)$ Since $M=\sigma_{1} U V^{*}+U_{2} \Sigma_{2} V_{2}^{*}$, we have $Q M V \eta=\sigma_{1} Q U \eta=\sigma_{1} V \eta$. $\xi=V \eta$ satisfies (3).
(3) \Rightarrow (2) Since $M=\sigma_{1} U V^{*}+U_{2} \Sigma_{2} V_{2}^{*}, Q M=\sigma_{1} Q U V^{*}+Q U_{2} \Sigma_{2} V_{2}^{*}$. Let denote $U_{2}=\left[\begin{array}{ll}U & U_{1}\end{array}\right], V_{2}=\left[\begin{array}{ll}V & V_{1}\end{array}\right], \Sigma=\operatorname{diag}\left[\sigma_{1} I_{r}, \Sigma_{2}\right]$ and $\tilde{\eta}:=V_{2}^{*} \xi$. Then $U_{2}^{*} M=\Sigma V_{2}^{*}$. From (3), $\|M \xi\|=\sigma_{1}$. Thus $\sigma_{1}^{2}=\left\|U_{2}^{*} M \xi\right\|^{2}=\left\|\Sigma V_{2}^{*} \xi\right\|^{2}=\|\Sigma \eta\|^{2}=$ $\sigma_{1}^{2}\left|\eta_{1}\right|^{2}+\ldots+\sigma_{n}^{2}\left|\eta_{n}\right|^{2} \leqslant \sigma_{1}^{2}\|\eta\|^{2}=\sigma_{1}^{2}$. This means that for every $j, \sigma_{j}=\sigma_{1}$ or $\eta_{j}=0$. Thus $\tilde{\eta}=\left[\begin{array}{ll}\eta & 0\end{array}\right]$ for some $\eta \in \mathbb{C}^{r}$. This implies $V \eta=\xi$. Then we have

$$
Q U \eta=Q U V^{*} \xi=\frac{1}{\sigma_{1}} Q M \xi=\xi=V \eta
$$

$(3) \Rightarrow(4) Q M \xi=\sigma_{1} \xi$ implies that

$$
\sigma_{1} \geqslant \mu_{\Delta}(M)=\max _{Q \in \mathbf{Q}} \rho(Q M) \geqslant \rho(Q M) \geqslant \sigma_{1}
$$

$(2) \Rightarrow(3)$ Since

$$
\max _{Q \in \mathbf{Q}} \rho(Q M)=m u_{\Delta}(M)=\sigma_{1}
$$

σ_{1} is an eigenvalue of $Q M$, which gives (3).

DEFINITION 1. We say that a block structure is μ-simple if for all $W \in \mathbb{C}^{n \times n}$, $0 \in c o\left(\nabla_{W}\right)$ implies $0 \in \nabla_{W}$.

Theorem 3. Let block structure Δ be μ-simple. Then, for every $M \in \mathbb{C}^{n \times n}$,

$$
\mu_{\Delta}(M)=\inf _{D \in \mathbf{D}} \bar{\sigma}\left(D^{\frac{1}{2}} M D^{-\frac{1}{2}}\right)
$$

DowóD. Let $\beta=\inf _{D \in \mathbf{D}} \bar{\sigma}\left(D^{\frac{1}{2}} M D^{-\frac{1}{2}}\right)$. Let D_{k} be a sequence in \mathbf{D} such that

$$
\bar{\sigma}\left(D^{\frac{1}{2}} M D^{-\frac{1}{2}}\right) \longrightarrow \beta, \text { as } k \longrightarrow \infty .
$$

Denote $W_{k}=D^{\frac{1}{2}} M D^{-\frac{1}{2}}$. Since the sequence W_{k} is bounded, it has a convergent subsequence with limit W. By continuity of $\bar{\sigma}$ and $\mu_{\Delta}, \bar{\sigma}(w)=\beta$ and $\mu_{\text {Delta }}(M)=$ $\mu_{\text {Delta }}(W)$. We claim that $0 \in \operatorname{co}\left(\nabla_{W}\right)$. Suppose to the contrary that $0 \notin c o\left(\nabla_{W}\right)$. Then, by Theorem 1., there exist $D \in \mathbf{D}$ end $\epsilon>0$ such that $\bar{\sigma}\left(D^{\frac{1}{2}} W D^{-\frac{1}{2}}\right)=\beta-\epsilon$. Choose k so that

$$
\left\|W_{k}-W\right\|<\frac{\epsilon}{2\left\|D^{\frac{1}{2}}\right\|\left\|D^{-\frac{1}{2}}\right\|}
$$

Then

$$
\left\|D^{\frac{1}{2}}\left(W_{k}-W\right) D^{-\frac{1}{2}}\right\|<\frac{\epsilon}{2}
$$

which yields

$$
\left\|D^{\frac{1}{2}} W_{k} D^{-\frac{1}{2}}\right\|<\beta-\frac{\epsilon}{2}
$$

This contradicts that β was the infimum, thus indeed $0 \in \operatorname{co}\left(\nabla_{W}\right)$. But Δ is μ simple, so $0 \in \nabla_{W}$ and by Theorem 2. $\bar{\sigma}(W)=\mu_{\delta}(W)$. Finally we get $\mu_{\delta}(M)=\beta$ as desired.

