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Let M ∈ C(n+n)×(n+m) be a block matrix.
We define the transfer function matrix

G(z) = S (
1
z

In,M) = M22 + M21(zI −M11)−1M12.

Suppose ∆ ⊂ Cn×n is some block structure. Put

∆P =
{
diag[δ1In,4] : δ1 ∈ C,4 ∈ ∆

}
.
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The following statements are equivalent:
1 ρ(M11) < 1 and maxθ∈[0,2π] µ∆(G(e iθ)) < 1;

2 ρ(M11) < 1 and maxθ∈[0,2π] µ∆(S (e iθIn,M)) < 1;

3 ρ(M11) < 1 and max|δ1 |≤1 µ∆(S (δ1In,M)) < 1;

4 ρ∆P (M) < 1.

(1)⇔(2) is clear.
(2)⇔(3) follows from subharmonicity of the function µ∆ (Lemma
3.7 says that is µ∆(·) = max4∈�∆ ρ(4·)) and the maximum
principe. The remaining equivalence is an immediate consequence
of Main Loop Theorem.
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Theorem (Main Loop Theorem)

µ∆(M) < 1⇔
{
µ2(M22) < 1,
max42∈�2 µ1(S (M,42)).
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Simillar results are possible when the upper bound is used instead
of µ. For any D ∈ � ⊂ Cn×n, where � is the scaling set for ∆,
define

MD =

[
M11 M12D−1/2

D1/2M21 D1/2M22D−1/2

]
.

Moreover we need
∆σ = Cm×m,

∆N =
{
diag[δ1In,42] : δ1 ∈ C, 42 ∈ ∆σ

}
.

Observe two important things. First that µδ = σ, and the second
that ∆N is µ-simple (this is the content of Theorem 9.6).
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The following are equivalent:
1 ρ(M11) < 1 and infD∈�‖D1/2G(MD)D−1/2‖∞ < 1,
2 ρ(M11) < 1 and infD∈�max|δ|≤1 σ[D1/2S (δIn,MD)D−1/2] < 1,
3 ρ(M11) < 1 and infD∈�max|δ|≤1 µ∆σ(S (δIn,MD)) < 1,
4 infD∈� µ∆N (MD) < 1,
5

inf
D∈�,X∈Cn×n ,X=X

t
>0
σ(

[
X1/2 0

0 D1/2

]
M

[
X−1/2 0

0 D−1/2

]
) < 1,

where G(M) = M22 + M21(I −M11)−1M12.

Observe D1/2G(M)D−1/2 = G(MD).
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For (1)⇔(2) it is enough to remaind the definition of ‖ ‖∞

‖G‖∞ = max
|z|≥1

σ(G(z))

(the definition is on the page 78 on the upper left). (2)⇔(3) follows
from the previous observation and

D1/2S (δIn,MD)D−1/2 = S (δIn,MD).

(3)⇔(4) is just the application of the Main Loop Theorem. To
obtain (4)⇔(5) we need Theorem 8.4.
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Theorem (8.4)

Suppose that ∆N is µ-simple. Then for every M ∈ C(n+n)×(n+m),

µ∆N (M) = inf
D∈�

σ(D1/2MD−1/2).

Now, after some computation

diag[D1/2
1 , IM]MDdiag[D−1/2, IM] =

diag[D1/2
1 ,D1/2] M diag[D−1/2

1 ,D−1/2].
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Let M ∈ C(n+np+m)×(n+np+m), partioned as below, relating several
variable of a linear system byxk+1

ek

zk

 =

M11 M12 M13

M21 M22 M23

M31 M32 M33


M11

M12

M13

 .
Let ∆ be a prescribed m ×m block structure.
As before we easily compute a linear fractional transformation
S (M,4) in this situation. Namely[

M11 M12

M21 M22

]
+

[
M13

M23

]
4(I −M334)−1

[
M31 M32

]
.
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Put
∆N =

{
diag[δ1In,42] : δ1 ∈ C, 42 ∈ C

np×np

}
,

∆S =
{
diag[4N ,4] : 4N ∈ ∆N , 4 ∈ ∆

}
,

∆P =
{
diag[42,4] : 42 ∈ C

np×np , 4 ∈ ∆
}
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Theorem (Time-invariant, robust performance)

Given the matrices and sets as defined above, the following
conditions are equivalent:

1 µ∆s (M) < 1,
2 µ∆(M33) < 1 and max4∈�∆(S (M,4)) < 1,
3 ρ(M11) < 1 and max|δ|≤1 µ∆P (S (δIn,M) < 1,
4 ρ(M11) < 1 and maxθ∈[0,2π](S (e iθδIn,M) < 1.

(1)⇔(2) and (1)⇔(3) hold due to Main Loop Theorem applied to
C(n+np)+m and Cn+(np+m), respectively. (3)⇔(4) we have already
proved (at the begining).
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