Transfer functions, state space tests for robust performance

Maria Trybuła

Jagiellonian University

June 18, 2014

Jagiellonian University

イロト イヨト イヨト イヨ

Maria Trybuła

Let $M \in \mathbb{C}^{(n+n)\times(n+m)}$ be a block matrix. We define the *transfer function matrix*

$$G(z) = \mathscr{S}(\frac{1}{z}I_n, M) = M_{22} + M_{21}(zI - M_{11})^{-1}M_{12}.$$

Suppose $\Delta \subset \mathbb{C}^{n \times n}$ is some block structure. Put

$$\Delta_{\mathcal{P}} = \Big\{ \operatorname{diag}[\delta_1 I_n, \Delta] : \delta_1 \in \mathbb{C}, \Delta \in \Delta \Big\}.$$

Jagiellonian University

ヘロト 人間 とくほ とくほとう

Maria Trybuła

The following statements are equivalent:

•
$$\rho(M_{11}) < 1$$
 and $\max_{\theta \in [0,2\pi]} \mu_{\Delta}(G(e^{i\theta})) < 1;$

- **②** $ρ(M_{11}) < 1$ and $max_{θ ∈ [0,2π]} μ_Δ(𝒴(e^{iθ}I_n, M)) < 1;$
- **③** $ρ(M_{11}) < 1$ and $max_{|δ_1|≤1} μ_Δ(\mathscr{S}(δ_1 I_n, M)) < 1;$

$$\Phi_{\Delta_P}(M) < 1.$$

(1) \Leftrightarrow (2) is clear. (2) \Leftrightarrow (3) follows from subharmonicity of the function μ_{Δ} (Lemma 3.7 says that is $\mu_{\Delta}(\cdot) = \max_{\Delta \in \mathbb{B}_{\Delta}} \rho(\Delta \cdot)$) and the maximum principe. The remaining equivalence is an immediate consequence of Main Loop Theorem.

イロト イロト イヨト イヨト

Transfer functions, state space tests for robust performance

Theorem (Main Loop Theorem)

$$\mu_{\Delta}(M) < 1 \Leftrightarrow \begin{cases} \mu_{2}(M_{22}) < 1, \\ \max_{\Delta_{2} \in \mathbb{B}_{2}} \mu_{1}(\mathscr{S}(M, \Delta_{2})) \end{cases}$$

Maria Trybuła

Jagiellonian University

∃ 9900

イロト イロト イヨト イヨト

Similar results are possible when the upper bound is used instead of μ . For any $D \in \mathbb{D} \subset \mathbb{C}^{n \times n}$, where \mathbb{D} is the scaling set for Δ , define

$$M_D = \begin{bmatrix} M_{11} & M_{12}D^{-1/2} \\ D^{1/2}M_{21} & D^{1/2}M_{22}D^{-1/2} \end{bmatrix}.$$

Moreover we need

$$\Delta_{\sigma} = \mathbb{C}^{m \times m},$$
$$\Delta_{N} = \left\{ \text{diag}[\delta_{1}I_{n}, \triangle_{2}] : \delta_{1} \in \mathbb{C}, \ \triangle_{2} \in \Delta_{\sigma} \right\}.$$

Observe two important things. First that $\mu_{\delta} = \overline{\sigma}$, and the second that Δ_N is μ -simple (this is the content of Theorem 9.6).

Maria Trybuła

Jagiellonian University

イロト イロト イヨト イヨト

The following are equivalent:

• $\rho(M_{11}) < 1$ and $\inf_{D \in \mathbb{D}} \|D^{1/2} \mathcal{G}(M_D) D^{-1/2}\|_{\infty} < 1$,

- $o(M_{11}) < 1 \text{ and } \inf_{D \in \mathbb{D}} \max_{|\delta| \le 1} \overline{\sigma}[D^{1/2} \mathscr{S}(\delta I_n, M_D) D^{-1/2}] < 1,$
- **③** $\rho(M_{11}) < 1$ and $\inf_{D \in \mathbb{D}} \max_{|\delta| \le 1} \mu_{\Delta_{\sigma}}(\mathscr{S}(\delta I_n, M_D)) < 1,$

$$inf_{D\in\mathbb{D}}\,\mu_{\Delta_N}(M_D) < 1$$

$$\inf_{D\in\mathbb{D},X\in\mathbb{C}^{n\times n},\,X=\overline{X}^t>0}\overline{\sigma}(\begin{bmatrix} X^{1/2} & 0\\ 0 & D^{1/2} \end{bmatrix} M \begin{bmatrix} X^{-1/2} & 0\\ 0 & D^{-1/2} \end{bmatrix}) < 1,$$

where $\mathcal{G}(M) = M_{22} + M_{21}(I - M_{11})^{-1}M_{12}$. Observe $D^{1/2}\mathcal{G}(M)D^{-1/2} = \mathcal{G}(M_D)$.

Maria Trybuła

6

▲□▶▲圖▶▲≣▶▲≣▶ ■ のQ@

For (1) \Leftrightarrow (2) it is enough to remaind the definition of $\| \|_{\infty}$

$$\|G\|_{\infty} = \max_{|z|\geq 1} \overline{\sigma}(G(z))$$

(the definition is on the page 78 on the upper left). (2) \Leftrightarrow (3) follows from the previous observation and

$$D^{1/2}\mathscr{S}(\delta I_n, M_D)D^{-1/2} = \mathscr{S}(\delta I_n, M_D).$$

 $(3) \Leftrightarrow (4)$ is just the application of the Main Loop Theorem. To obtain $(4) \Leftrightarrow (5)$ we need Theorem 8.4.

Maria Trybuła

Jagiellonian University

イロト イロト イヨト イヨト

Theorem (8.4)

Suppose that Δ_N is μ -simple. Then for every $M \in \mathbb{C}^{(n+n)\times(n+m)}$,

$$\mu_{\Delta_N}(M) = \inf_{D\in\mathbb{D}}\overline{\sigma}(D^{1/2}MD^{-1/2}).$$

Now, after some computation

diag
$$[D_1^{1/2}, I_M]M_D$$
diag $[D^{-1/2}, I_M] =$
diag $[D_1^{1/2}, D^{1/2}]M$ diag $[D_1^{-1/2}, D^{-1/2}].$

Jagiellonian University

∃ <2 <</p>

ヘロア 人間 アメヨア 人口 ア

Maria Trybuła

Let $M \in \mathbb{C}^{(n+n_p+m)\times(n+n_p+m)}$, particular as below, relating several variable of a linear system by

$$\begin{bmatrix} x_{k+1} \\ e_k \\ z_k \end{bmatrix} = \begin{bmatrix} M_{11} & M_{12} & M_{13} \\ M_{21} & M_{22} & M_{23} \\ M_{31} & M_{32} & M_{33} \end{bmatrix} \begin{bmatrix} M_{11} \\ M_{12} \\ M_{13} \end{bmatrix}.$$

Let Δ be a prescribed $m \times m$ block structure.

As before we easily compute a linear fractional transformation $\mathscr{S}(M, \triangle)$ in this situation. Namely

$$\begin{bmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{bmatrix} + \begin{bmatrix} M_{13} \\ M_{23} \end{bmatrix} \triangle (I - M_{33} \triangle)^{-1} \begin{bmatrix} M_{31} & M_{32} \end{bmatrix}.$$

Maria Trybuła

Jagiellonian University

イロト イロト イヨト イヨト

Transfer functions, state space tests for robust performance

Put

$$\Delta_{N} = \left\{ \text{diag}[\delta_{1}I_{n}, \Delta_{2}] : \delta_{1} \in \mathbb{C}, \ \Delta_{2} \in \mathbb{C}^{n_{p} \times n_{p}} \right\},$$
$$\Delta_{S} = \left\{ \text{diag}[\Delta_{N}, \Delta] : \Delta_{N} \in \Delta_{N}, \ \Delta \in \Delta \right\},$$
$$\Delta_{P} = \left\{ \text{diag}[\Delta_{2}, \Delta] : \Delta_{2} \in \mathbb{C}^{n_{p} \times n_{p}}, \ \Delta \in \Delta \right\}$$

Jagiellonian University

ヘロア 人間 アメヨア 人間 アー

E DQC

Maria Trybuła

Theorem (Time-invariant, robust performance)

Given the matrices and sets as defined above, the following conditions are equivalent:

$$\ \, \mathbf{0} \ \, \mu_{\Delta_s}(M) < 1,$$

• $\rho(M_{11}) < 1$ and $\max_{\theta \in [0,2\pi]} (\mathscr{S}(e^{i\theta} \delta I_n, M) < 1.$

(1) \Leftrightarrow (2) and (1) \Leftrightarrow (3) hold due to Main Loop Theorem applied to $\mathbb{C}^{(n+n_p)+m}$ and $\mathbb{C}^{n+(n_p+m)}$, respectively. (3) \Leftrightarrow (4) we have already proved (at the begining).

Maria Trybuła

▲□▶ ▲御▶ ▲臣▶ ▲臣▶ ―臣 – のへで