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Let f be a polynomial of degree n > 1 with roots zi,...,z,. Then

Ve >0VmeNyg 3 >0:

g(z) = bmz™+ ...+ by, |bj| <0

—> Jz1,...,2, roots of f + g such that |z; — zj| < e.
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Lemma (6.2)
There exists z € C¥ such that p(z) =0 and |z1| = ... = |z| = S,.

Proof.

Take any Z € C* with p(Z) = 0 and ||Z]|cc = Bp > 0. Assume that
|Zj| < Bp for some j, say j =1, and define

q(z1) == p(z1,22,...,2x). If ¢ # 0, the polynomials

qr(z1) := p(z1,rza, ..., rzx) have some roots w, — z; if r — 17.
Then ||(wy, rza, ..., rzx)|loo < Bp, contradiction. If g =0, we
proceed analogously in Ck—1. O
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There exists A € A with 5(A) = 1 and det(l, — MA) = 0. SVD
on any block of A gives U,V € Q and

> = diag[1ly, ..., 05,81, ..., 0w] € A such that I, — MUZV*
is singular. At least one of Ej,aj is 1. Let

Y(z1,. .., Zs4w) i=diaglzily, ..., Zslr, Zs41, - - -, Zs+w]. By the
definition of ua(M) and the previous lemma, the polynomial
det(/, — MUXV*) has a root Z :=(Z1,...,Zsyw) with [Z;| =1
for any j. Then £(Z) € Q, so Q := UX(Z)V* is what we are
looking for. [
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The second equality was in Lemma 3.7. Losing no generality
(rescalling) pa(M) = 1. Then p(@M) < ua(M) =1 for any
QR<Q.
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Proof.

The second equality was in Lemma 3.7. Losing no generality
(rescalling) pa(M) = 1. Then p(@M) < ua(M) =1 for any

| l>
A\

Q € Q. For Qy from Lemma 6.3 we have p(QoM) = p(MQp) > 1

(as 1 is an eigenvalue of MQp).
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M1 M12:| (

M = cC f71-|-f72)><(n1-i-f72)7
[le M2

where My, € CW*"™, A; C C%*" are block structures, B, Q;, i

corresponding balls, sets of unitary matrices and SSV'’s, j = 1,2.

Assume that pp(Mpy) < 1. Then

S (M — Z(M, A)).
Q@g@m( (M, @)) A";é‘éz“l( (M, Az))
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ua(M) =1. Indeed, pa(M) < 1 would imply RHS< 1. On the
other side, from pup(Map) < 8 and RHS< 8 for any 8 > 1, it
follows that pa(M) < 1.

By Lemma 6.3 we have Q; € Q; such that /p,,, — M diag[Q1, Q2]
is singular. Since po(Ma2) < 1, the matrix Ip, — M2 Qs is
invertible, so the identity (we saw it in the proof of the Main Loop
Theorem)

det(ln1+n2—M diag[Ql, QQ]) = det(/,,2—l\/122Q2) Clet(/,,1 —y(/\/l, QQ)C

holds. Thus I, — .7 (M, Q2)Q is singular, whence
p (S (M, Qz)) = 1. 0




Remark (6.6)

Similarity of the maximum-modulus theorem to a result of
Boyd-Desoer:

max na(H(z)) = max ra(H(2))

for H € O(D,C"<") N C(D).
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