Maximum-modulus theorem

Tomasz Warszawski

Będlewo workshop
16 VI 2014

Lemma (6.1, continuity of polynomials' roots)
Let f be a polynomial of degree $n \geq 1$ with roots z_{1}, \ldots, z_{n}.

Lemma (6.1, continuity of polynomials' roots)
Let f be a polynomial of degree $n \geq 1$ with roots z_{1}, \ldots, z_{n}. Then

$$
\forall \varepsilon>0 \forall m \in \mathbb{N}_{0} \exists \delta>0:
$$

Lemma (6.1, continuity of polynomials' roots)
Let f be a polynomial of degree $n \geq 1$ with roots z_{1}, \ldots, z_{n}. Then

$$
\begin{gathered}
\forall \varepsilon>0 \forall m \in \mathbb{N}_{0} \exists \delta>0: \\
g(z)=b_{m} z^{m}+\ldots+b_{0}, \quad\left|b_{j}\right|<\delta
\end{gathered}
$$

Lemma (6.1, continuity of polynomials' roots)

Let f be a polynomial of degree $n \geq 1$ with roots z_{1}, \ldots, z_{n}. Then

$$
\begin{gathered}
\forall \varepsilon>0 \forall m \in \mathbb{N}_{0} \exists \delta>0: \\
g(z)=b_{m} z^{m}+\ldots+b_{0}, \quad\left|b_{j}\right|<\delta \\
\Longrightarrow \exists \widetilde{z}_{1}, \ldots, \widetilde{z}_{n} \text { roots of } f+g \text { such that }\left|\widetilde{z}_{j}-z_{j}\right|<\varepsilon .
\end{gathered}
$$

$$
\|z\|_{\infty}:=\max _{j}\left|z_{j}\right|, \quad z \in \mathbb{C}^{k}
$$

$$
\|z\|_{\infty}:=\max _{j}\left|z_{j}\right|, \quad z \in \mathbb{C}^{k}
$$

$$
\beta_{p}:=\min \left\{\|z\|_{\infty}: p(z)=0\right\}, \quad p: \mathbb{C}^{k} \longrightarrow \mathbb{C} \text { polynomial }
$$

$$
\|z\|_{\infty}:=\max _{j}\left|z_{j}\right|, \quad z \in \mathbb{C}^{k}
$$

$$
\beta_{p}:=\min \left\{\|z\|_{\infty}: p(z)=0\right\}, \quad p: \mathbb{C}^{k} \longrightarrow \mathbb{C} \text { polynomial }
$$

Lemma (6.2)

There exists $z \in \mathbb{C}^{k}$ such that $p(z)=0$ and $\left|z_{1}\right|=\ldots=\left|z_{k}\right|=\beta_{p}$.

$$
\|z\|_{\infty}:=\max _{j}\left|z_{j}\right|, \quad z \in \mathbb{C}^{k}
$$

$$
\beta_{p}:=\min \left\{\|z\|_{\infty}: p(z)=0\right\}, \quad p: \mathbb{C}^{k} \longrightarrow \mathbb{C} \text { polynomial }
$$

Lemma (6.2)

There exists $z \in \mathbb{C}^{k}$ such that $p(z)=0$ and $\left|z_{1}\right|=\ldots=\left|z_{k}\right|=\beta_{p}$.
Proof.
Take any $\tilde{z} \in \mathbb{C}^{k}$ with $p(\widetilde{z})=0$ and $\|\tilde{z}\|_{\infty}=\beta_{p}>0$.

$$
\|z\|_{\infty}:=\max _{j}\left|z_{j}\right|, \quad z \in \mathbb{C}^{k}
$$

$$
\beta_{p}:=\min \left\{\|z\|_{\infty}: p(z)=0\right\}, \quad p: \mathbb{C}^{k} \longrightarrow \mathbb{C} \text { polynomial }
$$

Lemma (6.2)

There exists $z \in \mathbb{C}^{k}$ such that $p(z)=0$ and $\left|z_{1}\right|=\ldots=\left|z_{k}\right|=\beta_{p}$.

Proof.

Take any $\widetilde{z} \in \mathbb{C}^{k}$ with $p(\widetilde{z})=0$ and $\|\widetilde{z}\|_{\infty}=\beta_{p}>0$. Assume that $\left|\widetilde{z}_{j}\right|<\beta_{p}$ for some j, say $j=1$, and define $q\left(z_{1}\right):=p\left(z_{1}, \widetilde{z}_{2}, \ldots, \widetilde{z}_{k}\right)$.

$$
\|z\|_{\infty}:=\max _{j}\left|z_{j}\right|, \quad z \in \mathbb{C}^{k}
$$

$$
\beta_{p}:=\min \left\{\|z\|_{\infty}: p(z)=0\right\}, \quad p: \mathbb{C}^{k} \longrightarrow \mathbb{C} \text { polynomial }
$$

Lemma (6.2)

There exists $z \in \mathbb{C}^{k}$ such that $p(z)=0$ and $\left|z_{1}\right|=\ldots=\left|z_{k}\right|=\beta_{p}$.

Proof.

Take any $\widetilde{z} \in \mathbb{C}^{k}$ with $p(\widetilde{z})=0$ and $\|\widetilde{z}\|_{\infty}=\beta_{p}>0$. Assume that $\left|\widetilde{z}_{j}\right|<\beta_{p}$ for some j, say $j=1$, and define $q\left(z_{1}\right):=p\left(z_{1}, \widetilde{z}_{2}, \ldots, \widetilde{z}_{k}\right)$. If $q \not \equiv 0$, the polynomials $q_{r}\left(z_{1}\right):=p\left(z_{1}, r \widetilde{z}_{2}, \ldots, r \widetilde{z}_{k}\right)$ have some roots $w_{r} \rightarrow \widetilde{z}_{1}$ if $r \rightarrow 1^{-}$.

$$
\|z\|_{\infty}:=\max _{j}\left|z_{j}\right|, \quad z \in \mathbb{C}^{k}
$$

$$
\beta_{p}:=\min \left\{\|z\|_{\infty}: p(z)=0\right\}, \quad p: \mathbb{C}^{k} \longrightarrow \mathbb{C} \text { polynomial }
$$

Lemma (6.2)

There exists $z \in \mathbb{C}^{k}$ such that $p(z)=0$ and $\left|z_{1}\right|=\ldots=\left|z_{k}\right|=\beta_{p}$.

Proof.

Take any $\tilde{z} \in \mathbb{C}^{k}$ with $p(\widetilde{z})=0$ and $\|\widetilde{z}\|_{\infty}=\beta_{p}>0$. Assume that $\left|\widetilde{z}_{j}\right|<\beta_{p}$ for some j, say $j=1$, and define $q\left(z_{1}\right):=p\left(z_{1}, \widetilde{z}_{2}, \ldots, \widetilde{z}_{k}\right)$. If $q \not \equiv 0$, the polynomials $q_{r}\left(z_{1}\right):=p\left(z_{1}, r \widetilde{z}_{2}, \ldots, r \widetilde{z}_{k}\right)$ have some roots $w_{r} \rightarrow \widetilde{z}_{1}$ if $r \rightarrow 1^{-}$. Then $\left\|\left(w_{r}, r \widetilde{z}_{2}, \ldots, r \widetilde{z}_{k}\right)\right\|_{\infty}<\beta_{p}$, contradiction.

$$
\|z\|_{\infty}:=\max _{j}\left|z_{j}\right|, \quad z \in \mathbb{C}^{k}
$$

$$
\beta_{p}:=\min \left\{\|z\|_{\infty}: p(z)=0\right\}, \quad p: \mathbb{C}^{k} \longrightarrow \mathbb{C} \text { polynomial }
$$

Lemma (6.2)

There exists $z \in \mathbb{C}^{k}$ such that $p(z)=0$ and $\left|z_{1}\right|=\ldots=\left|z_{k}\right|=\beta_{p}$.

Proof.

Take any $\tilde{z} \in \mathbb{C}^{k}$ with $p(\tilde{z})=0$ and $\|\tilde{z}\|_{\infty}=\beta_{p}>0$. Assume that $\left|\widetilde{z}_{j}\right|<\beta_{p}$ for some j, say $j=1$, and define $q\left(z_{1}\right):=p\left(z_{1}, \widetilde{z}_{2}, \ldots, \widetilde{z}_{k}\right)$. If $q \not \equiv 0$, the polynomials $q_{r}\left(z_{1}\right):=p\left(z_{1}, r \widetilde{z}_{2}, \ldots, r \widetilde{z}_{k}\right)$ have some roots $w_{r} \rightarrow \widetilde{z}_{1}$ if $r \rightarrow 1^{-}$. Then $\left\|\left(w_{r}, r \widetilde{z}_{2}, \ldots, r \widetilde{z}_{k}\right)\right\|_{\infty}<\beta_{p}$, contradiction. If $q \equiv 0$, we proceed analogously in \mathbb{C}^{k-1}.

Lemma (6.3)
Let $\boldsymbol{\Delta} \subset \mathbb{C}^{n \times n}$ be a block structure and $M \in \mathbb{C}^{n \times n}$ satisfy $\mu_{\Delta}(M)=1$.

Lemma (6.3)

Let $\boldsymbol{\Delta} \subset \mathbb{C}^{n \times n}$ be a block structure and $M \in \mathbb{C}^{n \times n}$ satisfy $\mu_{\Delta}(M)=1$. Then there is $Q_{0} \in \boldsymbol{Q}:=\left\{Q \in \boldsymbol{\Delta}: Q^{*} Q=I_{n}\right\}$ such that $I_{n}-M Q_{0}$ is singular.

Lemma (6.3)

Let $\boldsymbol{\Delta} \subset \mathbb{C}^{n \times n}$ be a block structure and $M \in \mathbb{C}^{n \times n}$ satisfy $\mu_{\boldsymbol{\Delta}}(M)=1$. Then there is $Q_{0} \in \boldsymbol{Q}:=\left\{Q \in \boldsymbol{\Delta}: Q^{*} Q=I_{n}\right\}$ such that $I_{n}-M Q_{0}$ is singular.

Proof.

There exists $\widehat{\triangle} \in \boldsymbol{\Delta}$ with $\bar{\sigma}(\widehat{\triangle})=1$ and $\operatorname{det}\left(I_{n}-M \widehat{\triangle}\right)=0$.

Lemma (6.3)

Let $\boldsymbol{\Delta} \subset \mathbb{C}^{n \times n}$ be a block structure and $M \in \mathbb{C}^{n \times n}$ satisfy $\mu_{\boldsymbol{\Delta}}(M)=1$. Then there is $Q_{0} \in \boldsymbol{Q}:=\left\{Q \in \boldsymbol{\Delta}: Q^{*} Q=I_{n}\right\}$ such that $I_{n}-M Q_{0}$ is singular.

Proof.

There exists $\widehat{\triangle} \in \boldsymbol{\Delta}$ with $\bar{\sigma}(\widehat{\triangle})=1$ and $\operatorname{det}\left(I_{n}-M \widehat{\triangle}\right)=0$. SVD on any block of $\widehat{\triangle}$ gives $U, V \in \mathbf{Q}$ and
$\widehat{\Sigma}=\operatorname{diag}\left[\widehat{\delta}_{1} I_{r_{1}}, \ldots, \widehat{\delta}_{s} I_{r_{s}}, \widehat{\alpha}_{1}, \ldots, \widehat{\alpha}_{w}\right] \in \boldsymbol{\Delta}$ such that $I_{n}-M U \widehat{\Sigma} V^{*}$ is singular.

Lemma (6.3)

Let $\boldsymbol{\Delta} \subset \mathbb{C}^{n \times n}$ be a block structure and $M \in \mathbb{C}^{n \times n}$ satisfy $\mu_{\boldsymbol{\Delta}}(M)=1$. Then there is $Q_{0} \in \boldsymbol{Q}:=\left\{Q \in \boldsymbol{\Delta}: Q^{*} Q=I_{n}\right\}$ such that $I_{n}-M Q_{0}$ is singular.

Proof.

There exists $\widehat{\triangle} \in \boldsymbol{\Delta}$ with $\bar{\sigma}(\widehat{\triangle})=1$ and $\operatorname{det}\left(I_{n}-M \widehat{\triangle}\right)=0$. SVD on any block of $\widehat{\triangle}$ gives $U, V \in \mathbf{Q}$ and
$\widehat{\Sigma}=\operatorname{diag}\left[\widehat{\delta}_{1} I_{r_{1}}, \ldots, \widehat{\delta}_{s} I_{r_{s}}, \widehat{\alpha}_{1}, \ldots, \widehat{\alpha}_{w}\right] \in \boldsymbol{\Delta}$ such that $I_{n}-M U \widehat{\Sigma} V^{*}$ is singular. At least one of $\widehat{\delta}_{j}, \widehat{\alpha}_{j}$ is 1 .

Lemma (6.3)

Let $\boldsymbol{\Delta} \subset \mathbb{C}^{n \times n}$ be a block structure and $M \in \mathbb{C}^{n \times n}$ satisfy $\mu_{\boldsymbol{\Delta}}(M)=1$. Then there is $Q_{0} \in \boldsymbol{Q}:=\left\{Q \in \boldsymbol{\Delta}: Q^{*} Q=I_{n}\right\}$ such that $I_{n}-M Q_{0}$ is singular.

Proof.

There exists $\widehat{\triangle} \in \boldsymbol{\Delta}$ with $\bar{\sigma}(\widehat{\triangle})=1$ and $\operatorname{det}\left(I_{n}-M \widehat{\triangle}\right)=0$. SVD on any block of $\widehat{\triangle}$ gives $U, V \in \mathbf{Q}$ and
$\widehat{\Sigma}=\operatorname{diag}\left[\widehat{\delta}_{1} I_{r_{1}}, \ldots, \widehat{\delta}_{s} I_{r_{s}}, \widehat{\alpha}_{1}, \ldots, \widehat{\alpha}_{w}\right] \in \boldsymbol{\Delta}$ such that $I_{n}-M U \widehat{\Sigma} V^{*}$ is singular. At least one of $\widehat{\delta}_{j}, \widehat{\alpha}_{j}$ is 1 . Let
$\Sigma\left(z_{1}, \ldots, z_{s+w}\right):=\operatorname{diag}\left[z_{1} I_{r_{1}}, \ldots, z_{s} I_{r_{s}}, z_{s+1}, \ldots, z_{s+w}\right]$.

Lemma (6.3)

Let $\boldsymbol{\Delta} \subset \mathbb{C}^{n \times n}$ be a block structure and $M \in \mathbb{C}^{n \times n}$ satisfy $\mu_{\boldsymbol{\Delta}}(M)=1$. Then there is $Q_{0} \in \boldsymbol{Q}:=\left\{Q \in \boldsymbol{\Delta}: Q^{*} Q=I_{n}\right\}$ such that $I_{n}-M Q_{0}$ is singular.

Proof.

There exists $\widehat{\triangle} \in \boldsymbol{\Delta}$ with $\bar{\sigma}(\widehat{\triangle})=1$ and $\operatorname{det}\left(I_{n}-M \widehat{\triangle}\right)=0$. SVD on any block of $\widehat{\triangle}$ gives $U, V \in \mathbf{Q}$ and
$\widehat{\Sigma}=\operatorname{diag}\left[\widehat{\delta}_{1} I_{r_{1}}, \ldots, \widehat{\delta}_{s} I_{r_{s}}, \widehat{\alpha}_{1}, \ldots, \widehat{\alpha}_{w}\right] \in \boldsymbol{\Delta}$ such that $I_{n}-M U \widehat{\Sigma} V^{*}$ is singular. At least one of $\widehat{\delta}_{j}, \widehat{\alpha}_{j}$ is 1 . Let
$\Sigma\left(z_{1}, \ldots, z_{s+w}\right):=\operatorname{diag}\left[z_{1} I_{r_{1}}, \ldots, z_{s} I_{r_{s}}, z_{s+1}, \ldots, z_{s+w}\right]$. By the definition of $\mu_{\Delta}(M)$ and the previous lemma, the polynomial $\operatorname{det}\left(I_{n}-M U \Sigma V^{*}\right)$ has a root $Z:=\left(Z_{1}, \ldots, Z_{s+w}\right)$ with $\left|Z_{j}\right|=1$ for any j.

Lemma (6.3)

Let $\boldsymbol{\Delta} \subset \mathbb{C}^{n \times n}$ be a block structure and $M \in \mathbb{C}^{n \times n}$ satisfy $\mu_{\boldsymbol{\Delta}}(M)=1$. Then there is $Q_{0} \in \boldsymbol{Q}:=\left\{Q \in \boldsymbol{\Delta}: Q^{*} Q=I_{n}\right\}$ such that $I_{n}-M Q_{0}$ is singular.

Proof.

There exists $\widehat{\triangle} \in \boldsymbol{\Delta}$ with $\bar{\sigma}(\widehat{\triangle})=1$ and $\operatorname{det}\left(I_{n}-M \widehat{\triangle}\right)=0$. SVD on any block of $\widehat{\triangle}$ gives $U, V \in \mathbf{Q}$ and
$\widehat{\Sigma}=\operatorname{diag}\left[\widehat{\delta}_{1} I_{r_{1}}, \ldots, \widehat{\delta}_{s} I_{r_{s}}, \widehat{\alpha}_{1}, \ldots, \widehat{\alpha}_{w}\right] \in \boldsymbol{\Delta}$ such that $I_{n}-M U \widehat{\Sigma} V^{*}$ is singular. At least one of $\widehat{\delta}_{j}, \widehat{\alpha}_{j}$ is 1 . Let
$\Sigma\left(z_{1}, \ldots, z_{s+w}\right):=\operatorname{diag}\left[z_{1} I_{r_{1}}, \ldots, z_{s} I_{r_{s}}, z_{s+1}, \ldots, z_{s+w}\right]$. By the definition of $\mu_{\Delta}(M)$ and the previous lemma, the polynomial $\operatorname{det}\left(I_{n}-M U \Sigma V^{*}\right)$ has a root $Z:=\left(Z_{1}, \ldots, Z_{s+w}\right)$ with $\left|Z_{j}\right|=1$ for any j. Then $\Sigma(Z) \in \mathbf{Q}$, so $Q_{0}:=U \Sigma(Z) V^{*}$ is what we are looking for.

Theorem (6.4)

$$
\max _{Q \in \boldsymbol{Q}} \rho(Q M)=\max _{\Delta \in \boldsymbol{B}_{\boldsymbol{\Delta}}} \rho(\triangle M)=\mu_{\boldsymbol{\Delta}}(M) .
$$

Theorem (6.4)

$$
\max _{Q \in \boldsymbol{Q}} \rho(Q M)=\max _{\triangle \in \boldsymbol{B}_{\boldsymbol{\Delta}}} \rho(\triangle M)=\mu_{\Delta}(M)
$$

Proof.

The second equality was in Lemma 3.7. Losing no generality (rescalling) $\mu_{\Delta}(M)=1$.

Theorem (6.4)

$$
\max _{Q \in \boldsymbol{Q}} \rho(Q M)=\max _{\triangle \in \boldsymbol{B}_{\boldsymbol{\Delta}}} \rho(\triangle M)=\mu_{\Delta}(M)
$$

Proof.

The second equality was in Lemma 3.7. Losing no generality (rescalling) $\mu_{\Delta}(M)=1$. Then $\rho(Q M) \leq \mu_{\Delta}(M)=1$ for any $Q \in \mathbf{Q}$.

Theorem (6.4)

$$
\max _{Q \in \boldsymbol{Q}} \rho(Q M)=\max _{\Delta \in \boldsymbol{B}_{\boldsymbol{\Delta}}} \rho(\triangle M)=\mu_{\boldsymbol{\Delta}}(M)
$$

Proof.

The second equality was in Lemma 3.7. Losing no generality (rescalling) $\mu_{\Delta}(M)=1$. Then $\rho(Q M) \leq \mu_{\Delta}(M)=1$ for any $Q \in \mathbf{Q}$. For Q_{0} from Lemma 6.3 we have $\rho\left(Q_{0} M\right)=\rho\left(M Q_{0}\right) \geq 1$ (as 1 is an eigenvalue of $M Q_{0}$).

Theorem (6.5, maximum-modulus theorem, Packard-Balsamo)

$$
M=\left[\begin{array}{ll}
M_{11} & M_{12} \\
M_{21} & M_{22}
\end{array}\right] \in \mathbb{C}^{\left(n_{1}+n_{2}\right) \times\left(n_{1}+n_{2}\right)},
$$

where $M_{j k} \in \mathbb{C}^{n_{j} \times n_{k}}$,

Theorem (6.5, maximum-modulus theorem, Packard-Balsamo)

$$
M=\left[\begin{array}{ll}
M_{11} & M_{12} \\
M_{21} & M_{22}
\end{array}\right] \in \mathbb{C}^{\left(n_{1}+n_{2}\right) \times\left(n_{1}+n_{2}\right)}
$$

where $M_{j k} \in \mathbb{C}^{n_{j} \times n_{k}}, \boldsymbol{\Delta}_{j} \subset \mathbb{C}^{n_{j} \times n_{j}}$ are block structures, $\boldsymbol{B}_{j}, \boldsymbol{Q}_{j}, \mu_{j}$ corresponding balls, sets of unitary matrices and SSV's, $j=1,2$.

Theorem (6.5, maximum-modulus theorem, Packard-Balsamo)

$$
M=\left[\begin{array}{ll}
M_{11} & M_{12} \\
M_{21} & M_{22}
\end{array}\right] \in \mathbb{C}^{\left(n_{1}+n_{2}\right) \times\left(n_{1}+n_{2}\right)}
$$

where $M_{j k} \in \mathbb{C}^{n_{j} \times n_{k}}, \boldsymbol{\Delta}_{j} \subset \mathbb{C}^{n_{j} \times n_{j}}$ are block structures, $\boldsymbol{B}_{j}, \boldsymbol{Q}_{j}, \mu_{j}$ corresponding balls, sets of unitary matrices and SSV's, $j=1,2$. Assume that $\mu_{2}\left(M_{22}\right)<1$.

Theorem (6.5, maximum-modulus theorem, Packard-Balsamo)

$$
M=\left[\begin{array}{ll}
M_{11} & M_{12} \\
M_{21} & M_{22}
\end{array}\right] \in \mathbb{C}^{\left(n_{1}+n_{2}\right) \times\left(n_{1}+n_{2}\right)}
$$

where $M_{j k} \in \mathbb{C}^{n_{j} \times n_{k}}, \boldsymbol{\Delta}_{j} \subset \mathbb{C}^{n_{j} \times n_{j}}$ are block structures, $\boldsymbol{B}_{j}, \boldsymbol{Q}_{j}, \mu_{j}$ corresponding balls, sets of unitary matrices and SSV's, $j=1,2$. Assume that $\mu_{2}\left(M_{22}\right)<1$. Then

$$
\max _{Q_{2} \in \boldsymbol{Q}_{2}} \mu_{1}\left(\mathscr{S}\left(M, Q_{2}\right)\right)=\max _{\triangle_{2} \in \boldsymbol{B}_{2}} \mu_{1}\left(\mathscr{S}\left(M, \triangle_{2}\right)\right) .
$$

Proof.

Losing no generality (rescalling) $\mathrm{RHS}=1$. By Corollary 4.7 we have $\mu_{\Delta}(M)=1$.

Proof.

Losing no generality (rescalling) $\mathrm{RHS}=1$. By Corollary 4.7 we have $\mu_{\Delta}(M)=1$. Indeed, $\mu_{\Delta}(M)<1$ would imply RHS <1.

Proof.

Losing no generality (rescalling) $\mathrm{RHS}=1$. By Corollary 4.7 we have $\mu_{\Delta}(M)=1$. Indeed, $\mu_{\Delta}(M)<1$ would imply RHS <1. On the other side, from $\mu_{2}\left(M_{22}\right)<\beta$ and $\mathrm{RHS}<\beta$ for any $\beta>1$, it follows that $\mu_{\Delta}(M) \leq 1$.

Proof.

Losing no generality (rescalling) $\mathrm{RHS}=1$. By Corollary 4.7 we have $\mu_{\Delta}(M)=1$. Indeed, $\mu_{\Delta}(M)<1$ would imply RHS <1. On the other side, from $\mu_{2}\left(M_{22}\right)<\beta$ and $\mathrm{RHS}<\beta$ for any $\beta>1$, it follows that $\mu_{\Delta}(M) \leq 1$.
By Lemma 6.3 we have $Q_{j} \in \mathbf{Q}_{j}$ such that $I_{n_{1}+n_{2}}-M \operatorname{diag}\left[Q_{1}, Q_{2}\right]$ is singular.

Proof.

Losing no generality (rescalling) $\mathrm{RHS}=1$. By Corollary 4.7 we have $\mu_{\Delta}(M)=1$. Indeed, $\mu_{\Delta}(M)<1$ would imply RHS <1. On the other side, from $\mu_{2}\left(M_{22}\right)<\beta$ and $\mathrm{RHS}<\beta$ for any $\beta>1$, it follows that $\mu_{\Delta}(M) \leq 1$.
By Lemma 6.3 we have $Q_{j} \in \mathbf{Q}_{j}$ such that $I_{n_{1}+n_{2}}-M \operatorname{diag}\left[Q_{1}, Q_{2}\right]$ is singular. Since $\mu_{2}\left(M_{22}\right)<1$, the matrix $I_{n_{2}}-M_{22} Q_{2}$ is invertible,

Proof.

Losing no generality (rescalling) $\mathrm{RHS}=1$. By Corollary 4.7 we have $\mu_{\Delta}(M)=1$. Indeed, $\mu_{\Delta}(M)<1$ would imply RHS <1. On the other side, from $\mu_{2}\left(M_{22}\right)<\beta$ and $\mathrm{RHS}<\beta$ for any $\beta>1$, it follows that $\mu_{\Delta}(M) \leq 1$.
By Lemma 6.3 we have $Q_{j} \in \mathbf{Q}_{j}$ such that $I_{n_{1}+n_{2}}-M \operatorname{diag}\left[Q_{1}, Q_{2}\right]$ is singular. Since $\mu_{2}\left(M_{22}\right)<1$, the matrix $I_{n_{2}}-M_{22} Q_{2}$ is invertible, so the identity (we saw it in the proof of the Main Loop Theorem)

$$
\operatorname{det}\left(I_{n_{1}+n_{2}}-M \operatorname{diag}\left[Q_{1}, Q_{2}\right]\right)=\operatorname{det}\left(I_{n_{2}}-M_{22} Q_{2}\right) \operatorname{det}\left(I_{n_{1}}-\mathscr{S}\left(M, Q_{2}\right) Q_{1}\right)
$$

holds.

Proof.

Losing no generality (rescalling) $\mathrm{RHS}=1$. By Corollary 4.7 we have $\mu_{\Delta}(M)=1$. Indeed, $\mu_{\Delta}(M)<1$ would imply RHS <1. On the other side, from $\mu_{2}\left(M_{22}\right)<\beta$ and $\mathrm{RHS}<\beta$ for any $\beta>1$, it follows that $\mu_{\Delta}(M) \leq 1$.
By Lemma 6.3 we have $Q_{j} \in \mathbf{Q}_{j}$ such that $I_{n_{1}+n_{2}}-M \operatorname{diag}\left[Q_{1}, Q_{2}\right]$ is singular. Since $\mu_{2}\left(M_{22}\right)<1$, the matrix $I_{n_{2}}-M_{22} Q_{2}$ is invertible, so the identity (we saw it in the proof of the Main Loop Theorem)
$\operatorname{det}\left(I_{n_{1}+n_{2}}-M \operatorname{diag}\left[Q_{1}, Q_{2}\right]\right)=\operatorname{det}\left(I_{n_{2}}-M_{22} Q_{2}\right) \operatorname{det}\left(I_{n_{1}}-\mathscr{S}\left(M, Q_{2}\right) Q_{1}\right)$
holds. Thus $I_{n_{1}}-\mathscr{S}\left(M, Q_{2}\right) Q_{1}$ is singular,

Proof.

Losing no generality (rescalling) $\mathrm{RHS}=1$. By Corollary 4.7 we have $\mu_{\Delta}(M)=1$. Indeed, $\mu_{\Delta}(M)<1$ would imply RHS <1. On the other side, from $\mu_{2}\left(M_{22}\right)<\beta$ and $\mathrm{RHS}<\beta$ for any $\beta>1$, it follows that $\mu_{\Delta}(M) \leq 1$.
By Lemma 6.3 we have $Q_{j} \in \mathbf{Q}_{j}$ such that $I_{n_{1}+n_{2}}-M \operatorname{diag}\left[Q_{1}, Q_{2}\right]$ is singular. Since $\mu_{2}\left(M_{22}\right)<1$, the matrix $I_{n_{2}}-M_{22} Q_{2}$ is invertible, so the identity (we saw it in the proof of the Main Loop Theorem)
$\operatorname{det}\left(I_{n_{1}+n_{2}}-M \operatorname{diag}\left[Q_{1}, Q_{2}\right]\right)=\operatorname{det}\left(I_{n_{2}}-M_{22} Q_{2}\right) \operatorname{det}\left(I_{n_{1}}-\mathscr{S}\left(M, Q_{2}\right) Q_{1}\right)$
holds. Thus $I_{n_{1}}-\mathscr{S}\left(M, Q_{2}\right) Q_{1}$ is singular, whence $\mu_{1}\left(\mathscr{S}\left(M, Q_{2}\right)\right) \geq 1$.

Remark (6.6)

Similarity of the maximum-modulus theorem to a result of Boyd-Desoer:

$$
\max _{|z|=1} \mu_{\Delta}(H(z))=\max _{|z| \leq 1} \mu_{\Delta}(H(z))
$$

for $H \in \mathcal{O}\left(\mathbb{D}, \mathbb{C}^{n \times n}\right) \cap \mathcal{C}(\overline{\mathbb{D}})$.

Remark
Theorem 6.4 is a special case of Theorem 6.5.

Remark
Theorem 6.4 is a special case of Theorem 6.5.
Proof.
$\boldsymbol{\Delta}_{1}:=\left\{\delta I_{n}: \delta \in \mathbb{C}\right\}$,

$$
\tilde{M}=\left[\begin{array}{cc}
0 & M \\
I_{n} & 0
\end{array}\right]
$$

Remark

Theorem 6.4 is a special case of Theorem 6.5.

Proof.

$\boldsymbol{\Delta}_{1}:=\left\{\delta I_{n}: \delta \in \mathbb{C}\right\}$,

$$
\tilde{M}=\left[\begin{array}{cc}
0 & M \\
I_{n} & 0
\end{array}\right] .
$$

Since $\mu_{1}=\rho, \mu_{2}(0)=0$ and
$\mathscr{S}(\widetilde{M}, \triangle)=0+M \triangle\left(I_{n}-0 \triangle\right)^{-1} I_{n}=M \triangle$, it follows that

Remark

Theorem 6.4 is a special case of Theorem 6.5.

Proof.

$\boldsymbol{\Delta}_{1}:=\left\{\delta I_{n}: \delta \in \mathbb{C}\right\}$,

$$
\tilde{M}=\left[\begin{array}{cc}
0 & M \\
I_{n} & 0
\end{array}\right]
$$

Since $\mu_{1}=\rho, \mu_{2}(0)=0$ and
$\mathscr{S}(\widetilde{M}, \triangle)=0+M \triangle\left(I_{n}-0 \triangle\right)^{-1} I_{n}=M \triangle$, it follows that

$$
\max _{Q \in \mathbf{Q}} \rho(Q M)=\max _{Q \in \mathbf{Q}} \mu_{1}(\mathscr{S}(\tilde{M}, Q))
$$

Remark

Theorem 6.4 is a special case of Theorem 6.5.

Proof.

$\boldsymbol{\Delta}_{1}:=\left\{\delta I_{n}: \delta \in \mathbb{C}\right\}$,

$$
\tilde{M}=\left[\begin{array}{cc}
0 & M \\
I_{n} & 0
\end{array}\right]
$$

Since $\mu_{1}=\rho, \mu_{2}(0)=0$ and
$\mathscr{S}(\widetilde{M}, \triangle)=0+M \triangle\left(I_{n}-0 \triangle\right)^{-1} I_{n}=M \triangle$, it follows that

$$
\begin{aligned}
\max _{Q \in \mathbf{Q}} \rho(Q M) & =\max _{Q \in \mathbf{Q}} \mu_{1}(\mathscr{S}(\tilde{M}, Q)) \\
& =\max _{\Delta \in \mathbf{B}_{\Delta}} \mu_{1}(\mathscr{S}(\tilde{M}, \triangle))
\end{aligned}
$$

Remark

Theorem 6.4 is a special case of Theorem 6.5.

Proof.

$\boldsymbol{\Delta}_{1}:=\left\{\delta I_{n}: \delta \in \mathbb{C}\right\}$,

$$
\tilde{M}=\left[\begin{array}{cc}
0 & M \\
I_{n} & 0
\end{array}\right]
$$

Since $\mu_{1}=\rho, \mu_{2}(0)=0$ and
$\mathscr{S}(\widetilde{M}, \triangle)=0+M \triangle\left(I_{n}-0 \triangle\right)^{-1} I_{n}=M \triangle$, it follows that

$$
\begin{aligned}
\max _{Q \in \mathbf{Q}} \rho(Q M) & =\max _{Q \in \mathbf{Q}} \mu_{1}(\mathscr{S}(\tilde{M}, Q)) \\
& =\max _{\Delta \in \mathbf{B}_{\Delta}} \mu_{1}(\mathscr{S}(\tilde{M}, \triangle)) \\
& =\max _{\Delta \in \mathbf{B}_{\Delta}} \rho(M \triangle)
\end{aligned}
$$

Remark

Theorem 6.4 is a special case of Theorem 6.5.

Proof.

$\boldsymbol{\Delta}_{1}:=\left\{\delta I_{n}: \delta \in \mathbb{C}\right\}$,

$$
\tilde{M}=\left[\begin{array}{cc}
0 & M \\
I_{n} & 0
\end{array}\right]
$$

Since $\mu_{1}=\rho, \mu_{2}(0)=0$ and
$\mathscr{S}(\widetilde{M}, \triangle)=0+M \triangle\left(I_{n}-0 \triangle\right)^{-1} I_{n}=M \triangle$, it follows that

$$
\begin{aligned}
\max _{Q \in \mathbf{Q}} \rho(Q M) & =\max _{Q \in \mathbf{Q}} \mu_{1}(\mathscr{S}(\tilde{M}, Q)) \\
& =\max _{\Delta \in \mathbf{B}_{\Delta}} \mu_{1}(\mathscr{S}(\tilde{M}, \triangle)) \\
& =\max _{\Delta \in \mathbf{B}_{\Delta}} \rho(M \triangle) \\
& =\mu_{\Delta}(M)
\end{aligned}
$$

