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Lemma (6.1, continuity of polynomials’ roots)

Let f be a polynomial of degree n ≥ 1 with roots z1, . . . , zn.

Then

∀ε > 0 ∀m ∈ N0 ∃δ > 0 :

g(z) = bmz
m + . . .+ b0, |bj | < δ

=⇒ ∃z̃1, . . . , z̃n roots of f + g such that |z̃j − zj | < ε.
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‖z‖∞ := max
j
|zj |, z ∈ Ck

βp := min{‖z‖∞ : p(z) = 0}, p : Ck −→ C polynomial

Lemma (6.2)

There exists z ∈ Ck such that p(z) = 0 and |z1| = . . . = |zk | = βp.

Proof.

Take any z̃ ∈ Ck with p(z̃) = 0 and ‖z̃‖∞ = βp > 0. Assume that
|z̃j | < βp for some j , say j = 1, and define
q(z1) := p(z1, z̃2, . . . , z̃k). If q 6≡ 0, the polynomials
qr (z1) := p(z1, r z̃2, . . . , r z̃k) have some roots wr → z̃1 if r → 1−.
Then ‖(wr , r z̃2, . . . , r z̃k)‖∞ < βp, contradiction. If q ≡ 0, we
proceed analogously in Ck−1.
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Lemma (6.3)

Let ∆ ⊂ Cn×n be a block structure and M ∈ Cn×n satisfy
µ∆(M) = 1.

Then there is Q0 ∈ Q := {Q ∈ ∆ : Q∗Q = In} such
that In −MQ0 is singular.

Proof.

There exists 4̂ ∈ ∆ with σ̄(4̂) = 1 and det(In −M4̂) = 0. SVD
on any block of 4̂ gives U,V ∈ Q and
Σ̂ = diag[δ̂1Ir1 , . . . , δ̂s Irs , α̂1, . . . , α̂w ] ∈ ∆ such that In −MUΣ̂V ∗

is singular. At least one of δ̂j , α̂j is 1. Let
Σ(z1, . . . , zs+w ) := diag[z1Ir1 , . . . , zs Irs , zs+1, . . . , zs+w ]. By the
definition of µ∆(M) and the previous lemma, the polynomial
det(In −MUΣV ∗) has a root Z := (Z1, . . . ,Zs+w ) with |Zj | = 1
for any j . Then Σ(Z ) ∈ Q, so Q0 := UΣ(Z )V ∗ is what we are
looking for.
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Theorem (6.4)

max
Q∈Q

ρ(QM) = max
4∈B∆

ρ(4M) = µ∆(M).

Proof.

The second equality was in Lemma 3.7. Losing no generality
(rescalling) µ∆(M) = 1. Then ρ(QM) ≤ µ∆(M) = 1 for any
Q ∈ Q. For Q0 from Lemma 6.3 we have ρ(Q0M) = ρ(MQ0) ≥ 1
(as 1 is an eigenvalue of MQ0).
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Theorem (6.5, maximum-modulus theorem, Packard-Balsamo)

M =

[
M11 M12
M21 M22

]
∈ C(n1+n2)×(n1+n2),

where Mjk ∈ Cnj×nk ,

∆j ⊂ Cnj×nj are block structures, Bj , Qj , µj
corresponding balls, sets of unitary matrices and SSV’s, j = 1, 2.
Assume that µ2(M22) < 1. Then

max
Q2∈Q2

µ1(S (M,Q2)) = max
42∈B2

µ1(S (M,42)).
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Proof.

Losing no generality (rescalling) RHS=1. By Corollary 4.7 we have
µ∆(M) = 1.

Indeed, µ∆(M) < 1 would imply RHS< 1. On the
other side, from µ2(M22) < β and RHS< β for any β > 1, it
follows that µ∆(M) ≤ 1.
By Lemma 6.3 we have Qj ∈ Qj such that In1+n2 −M diag[Q1,Q2]
is singular. Since µ2(M22) < 1, the matrix In2 −M22Q2 is
invertible, so the identity (we saw it in the proof of the Main Loop
Theorem)

det(In1+n2−M diag[Q1,Q2]) = det(In2−M22Q2) det(In1−S (M,Q2)Q1)

holds. Thus In1 −S (M,Q2)Q1 is singular, whence
µ1(S (M,Q2)) ≥ 1.
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Remark (6.6)

Similarity of the maximum-modulus theorem to a result of
Boyd-Desoer:

max
|z|=1

µ∆(H(z)) = max
|z|≤1

µ∆(H(z))

for H ∈ O(D,Cn×n) ∩ C(D).



Remark

Theorem 6.4 is a special case of Theorem 6.5.

Proof.

∆1 := {δIn : δ ∈ C},

M̃ =

[
0 M
In 0

]
.

Since µ1 = ρ, µ2(0) = 0 and
S (M̃,4) = 0 + M4(In − 04)−1In = M4, it follows that

max
Q∈Q

ρ(QM) = max
Q∈Q

µ1(S (M̃,Q))

= max
4∈B∆

µ1(S (M̃,4))

= max
4∈B∆

ρ(M4)

= µ∆(M).
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