Section 7: A lower bound algorithm

Sylwester Zając

17.06.2014

Sylwester Zając ()

Section 7: A lower bound algorithm

· 《 클 ▶ 클 ∽ ↔ 17.06.2014 1 / 16

イロト イロト イヨト イヨト

As previously, we consider a block structure

$$\Delta = \left\{ \operatorname{diag} \left(\delta_1 I_{r_1}, \ldots, \delta_n I_{r_n}, \Delta_{S+1}, \ldots, \Delta_{S+F} \right) : \delta_j \in \mathbb{C}, \Delta_{S+j} \in \mathbb{C}^{m_j \times m_j} \right\},\$$

where

$$r_1+\ldots,+r_S+m_1+\ldots+m_F=n.$$

Recall that for $M \in \mathbb{C}^{n \times n}$

$$\mu_{\Delta}(M) = \max_{\Delta \in \mathsf{B}_{\Delta}} \rho(\Delta M) = \max_{Q \in \mathsf{Q}} \rho(QM)$$

and

$$\begin{array}{lll} \mathbf{B}_{\Delta} &=& \{\Delta \in \Delta : \bar{\sigma}(\Delta) \leq 1\}, \\ \mathbf{Q} &=& \{Q \in \Delta : Q \text{ is unitary}\}, \\ \mathbf{D} &=& \{\operatorname{diag}\left(D_{1}, \ldots, D_{S}, d_{S+1}I_{m_{1}}, \ldots, d_{S+F}I_{m_{F}}\right) : \\ && D_{j} \in \mathbb{C}^{r_{j} \times r_{j}}, D_{j} > 0, d_{S+j} \in \mathbb{R}_{>0}\}. \end{array}$$

Note that every $D \in \mathbf{D}$ and $\Delta \in \Delta$ commute.

Sylwester Zając ()

・ロト ・四ト ・ヨト ・ヨト

Observation

Let $M \in \mathbb{C}^{n \times n}$, $\beta > 0$. If there exist $Q \in \mathbf{Q}$, $D \in \mathbf{D}$, $\xi \in \mathbb{C}^{n}$, $\|\xi\| = 1$ such that

$$QD^{\frac{1}{2}}MD^{-\frac{1}{2}}\xi = \beta\xi, \tag{1}$$

$$D^{-\frac{1}{2}}M^*D^{\frac{1}{2}}Q^*\xi = \beta\xi,$$
 (2)

then

$$\beta \leq \mu_{\Delta}(M).$$

Putting $\eta = \|D^{-\frac{1}{2}}\xi\|^{-1}D^{-\frac{1}{2}}\xi$ we obtain that (1) and (2) are equivalent to

$$\exists \eta \in \mathbb{C}^n, \|\eta\| = 1: \ QM\eta = \beta\eta, \quad (QM)^* D\eta = \beta D\eta.$$
(3)

Proof of Observation: β is an eigenvalue of QM, so $\beta \leq \rho(QM) \leq \mu_{\Delta}(M)$ (actually, here we use only (1)).

・ロト ・四ト ・ヨト ・ヨト

Example

$$S = 1, F = 0, r_1 = 2, \Delta = \{ \operatorname{diag}(\delta, \delta) : \delta \in \mathbb{C} \}.$$
$$M := \begin{bmatrix} 3 & -1 \\ 1 & 1 \end{bmatrix}.$$

We have $det(qM - \lambda) = (2q - \lambda)^2$ and hence

$$\mu_{\Delta}(M) = \max_{|q|=1} \rho(QM) = 2,$$

but there is no $\beta > 0$ which satisfies (1) and (2) (although there is much β 's satisfying (1) with some Q, D, ξ).

イロン イロン イヨン イ

Example

$$S = 1, F = 0, r_1 = 2, \Delta = \{ \operatorname{diag}(\delta, \delta) : \delta \in \mathbb{C} \}.$$
$$M := \begin{bmatrix} 3 & -1 \\ 1 & 1 \end{bmatrix}.$$

We have $\det(qM-\lambda)=(2q-\lambda)^2$ and hence

$$\mu_{\Delta}(M) = \max_{|q|=1} \rho(QM) = 2,$$

but there is no $\beta > 0$ which satisfies (1) and (2) (although there is much β 's satisfying (1) with some Q, D, ξ).

Indeed, (1) and (2) hold iff (3) hold with some $Q \in \mathbf{Q}$, $D \in \mathbf{D}$, $\|\eta\| = 1$. This gives $Q = I_2$, $\beta = 2$ and

$$\eta \in \mathbb{R} \cdot (1,1), \quad D\eta \in \mathbb{R} \cdot (1,-1).$$

Hence $0 = \langle D\eta, \eta \rangle > 0$, a contradiction.

・ロト ・回ト ・ヨト ・ヨ

Example

S = 1, F = 0, $r_1 = 3$, $\Delta = \{ \text{diag} (\delta, \delta, \delta) : \delta \in \mathbb{C} \}$.

$$M:=egin{bmatrix} 3 & -1 & 0 \ 1 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix}.$$

We have $\det(qM-\lambda)=(2q-\lambda)^2(q-\lambda)$ and hence

$$\mu_{\Delta}(M) = \max_{|q|=1} \rho(QM) = 2,$$

but the only $\beta > 0$ which satisfies (1) and (2) is $\beta = 1$.

<ロ> (四) (四) (日) (日) (日)

Let $x, y \in \mathbb{C}^n$. Write them compatibly to Δ :

$$\begin{aligned} x &= (x_1, \dots, x_S, x_{S+1}, \dots, x_{S+F}) \in \mathbb{C}^{r_1} \times \dots \times \mathbb{C}^{r_S} \times \mathbb{C}^{m_1} \times \dots \times \mathbb{C}^{m_F} = \mathbb{C}^n, \\ y &= (y_1, \dots, y_S, y_{S+1}, \dots, y_{S+F}) \in \mathbb{C}^{r_1} \times \dots \times \mathbb{C}^{r_S} \times \mathbb{C}^{m_1} \times \dots \times \mathbb{C}^{m_F} = \mathbb{C}^n. \end{aligned}$$

We say that the pair (x, y) is *non-degenerate* (with respect to Δ), if

$$\langle x_1, y_1 \rangle, \ldots, \langle x_S, y_S \rangle \neq 0$$
 and $x_{S+1}, y_{S+1} \neq 0, \ldots, x_{S+F}, y_{S+F} \neq 0.$

Theorem

Let $M \in \mathbb{C}^{n \times n}$. Assume that there exists $Q_0 \in \mathbf{Q}$ such that:

•
$$\rho(Q_0 M) = \max_{Q \in \mathbf{Q}} \rho(QM) > 0,$$

- $\rho(Q_0M)$ is a distinct eigenvalue of Q_0M ,
- there exist a non-degenerate pair $(x, y) \in \mathbb{C}^n \times \mathbb{C}^n$ such that

$$Q_0 M x = \rho(Q_0 M) x, \quad (Q_0 M)^* y = \rho(Q_0 M) y.$$

Then there exists $D \in \mathbf{D}$ and $\xi \in \mathbb{C}^n$, $\|\xi\| = 1$ such that

$$\begin{array}{rcl} Q_0 D^{\frac{1}{2}} M D^{-\frac{1}{2}} \xi & = & \mu_{\Delta}(M) \xi, \\ D^{-\frac{1}{2}} M^* D^{\frac{1}{2}} Q_0^* \xi & = & \mu_{\Delta}(M) \xi. \end{array}$$

Lemma

Let $x, y \in \mathbb{C}^n$ be non-degenerate vectors. Then the following are equivalent:

- there exists $D \in \mathbf{D}$ such that y = Dx.
- **3** for every $G \in \Delta$ such that $G + G^* \leq 0$, $GG^* = G^*G$ there is $\operatorname{Re} \langle Gx, y \rangle \leq 0$.

Proof of the lemma. (1) \Rightarrow (2): D and G commute and y = Dx, so

$$\langle Gx, y \rangle = \langle Gx, D^{\frac{1}{2}} D^{\frac{1}{2}} x \rangle = \langle D^{\frac{1}{2}} Gx, D^{\frac{1}{2}} x \rangle = \langle GD^{\frac{1}{2}} x, D^{\frac{1}{2}} x \rangle,$$
$$\overline{\langle Gx, y \rangle} = \langle D^{\frac{1}{2}} x, GD^{\frac{1}{2}} x \rangle = \langle G^* D^{\frac{1}{2}} x, D^{\frac{1}{2}} x \rangle.$$

Hence

$$2\mathrm{Re}\langle Gx,y\rangle = \langle (G+G^*)D^{\frac{1}{2}}x, D^{\frac{1}{2}}x\rangle \leq 0.$$

(2) \Rightarrow (1): It suffices to prove it for each block separately, so in fact we need to consider only two cases:

- $\Delta = \mathbb{C}^{n \times n}$,
- $\Delta = \{ \operatorname{diag} (\delta, \ldots, \delta) : \delta \in \mathbb{C} \}.$

イロト イポト イヨト イヨト

The case $\Delta = \mathbb{C}^{n \times n}$. Since

$$\mathbf{D} = \left\{ \operatorname{diag}(d, \ldots, d) : d \in \mathbb{R}_{>0} \right\},\$$

we have to prove that y = dx for some d > 0. We may assume that

$$||x|| = ||y|| = 1.$$

There exists an unitary matrix $U \in \mathbb{C}^{n \times n}$ such that

$$Ux = y$$
.

We have

$$U = P^* J P$$

for some unitary matrices $P, J \in \mathbb{C}^{n \times n}$, $J = \operatorname{diag}(\zeta_1, \ldots, \zeta_n)$, $\zeta_j \in \mathbb{T}$. Write

$$Px = (a_1, \ldots, a_n).$$

There is

$$Py = JPx = (\zeta_1 a_1, \ldots, \zeta_n a_n).$$

It suffices to show that $a_j\zeta_j = a_j$ for every j.

Sylwester Zając ()

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Without loss of generality: j = 1. Suppose that $a_1\zeta_1 \neq a_1$, i.e. $a_1 \neq 0$ and $\zeta_1 \neq 1$. There exists $\eta_1 \in \mathbb{T}$ such that

$$\operatorname{Re} \eta_1 \leq 0, \ \operatorname{Re} (\eta_1 \overline{\zeta}_1) > 0.$$

Let

$$G := P^* \operatorname{diag}(\eta_1, 0, \ldots, 0) P$$

We have

$$\begin{split} 0 \geq \operatorname{Re} \langle Gx, y \rangle &= \langle \operatorname{diag} (\eta_1, 0, \dots, 0) Px, Py \rangle \\ &= \langle (\eta_1 a_1, 0, \dots, 0), (a_1 \zeta_1, \dots, a_n \zeta_n) \rangle \\ &= |a_1|^2 \operatorname{Re} (\eta_1 \overline{\zeta}_1) > 0, \end{split}$$

a contradiction.

The case $\Delta = \{ \operatorname{diag} (\delta, \dots, \delta) : \delta \in \mathbb{C} \}$. We have $\mathbf{D} = \{ D \in \mathbb{C}^{n \times n} : D > 0 \},$

Existence of D such that Dx = y follows from the fact that $\langle x, y \rangle > 0$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへぐ

Proof of the theorem. Step 1: If $Q_0 = I$, then there exists $D \in \mathbf{D}$ such that

y = Dx.

Proof of step 1: Let $G \in \Delta$, $G + G^* \leq 0$, $GG^* = G^*G$. It suffices to show that

 $\operatorname{Re}\langle Gx, y \rangle \leq 0.$

Define

$$W(t):=e^{tG}M,\ t\geq 0.$$

 $\rho(M)$ is a distinct eigenvalue of M, so $\langle x, y \rangle \neq 0$ and we may assume $\langle x, y \rangle = 1$. There are $\epsilon > 0$ and \mathbb{R} -analytic maps $X, Y : (-\epsilon, \epsilon) \to \mathbb{C}^n$, $\lambda : (-\epsilon, \epsilon) \to \mathbb{C}$ s.t.

•
$$\lambda(0) = \rho(W(0)) = \rho(M), X(0) = x, Y(0) = y,$$

• $\lambda(t)$ is a distinct eigenvalue of W(t),

•
$$|\lambda(t)| = \rho(W(t)),$$

- $W(t)X(t) = \lambda(t)X(t), W(t)^*Y(t) = \overline{\lambda(t)}Y(t),$
- $\langle X(t), Y(t) \rangle = 1.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Since $GG^* = G^*G$, we have

$$e^{tG} \in \mathbf{B}_{\Delta}, t \geq 0,$$

so the function $[0,\epsilon)
i t \mapsto \operatorname{Re} \lambda(t)$ has a maximum at t = 0. There holds

$$\lambda'(0) = \langle W'(0)x, y \rangle.$$

Hence

$$0 \geq \operatorname{Re} \lambda'(0) = \operatorname{Re} \langle W'(0)x, y \rangle = \operatorname{Re} \langle GMx, y \rangle = \rho(M) \operatorname{Re} \langle Gx, y \rangle.$$

Step 2: We prove the conclusion. By **step 1** for $\widetilde{M} := Q_0 M$ we have y = Dx for some $D \in \mathbf{D}$. Put

$$\xi = D^{\frac{1}{2}} x = D^{-\frac{1}{2}} y.$$

As Q_0 and $D^{\frac{1}{2}}$ commute, we have

$$Q_0 D^{\frac{1}{2}} M D^{-\frac{1}{2}} \xi = D^{\frac{1}{2}} Q_0 M D^{-\frac{1}{2}} D^{\frac{1}{2}} x = \rho(Q_0 M) D^{\frac{1}{2}} x = \mu_{\Delta}(M) \xi$$

and similarly we obtain the condition (2).

Sylwester Zając ()

E 990

イロト イロト イヨト イヨト

From now, for simplicity: S = F = 1, r + m = n, i.e.

$$\begin{aligned} \Delta &= \left\{ \operatorname{diag} \left(\delta_1 I_r, \Delta_2 \right) : \delta_1 \in \mathbb{C}, \Delta_2 \in \mathbb{C}^{m \times m} \right\}, \\ \mathbf{D} &= \left\{ \operatorname{diag} \left(D_1, d_2 I_m \right) : D_1 \in \mathbb{C}^{r \times r}, D_1 > 0, d_2 \in \mathbb{R}_{>0} \right\}. \end{aligned}$$

Proposition

Let $M \in \mathbb{C}^{n \times n}$, $\beta > 0$. Then there exist $Q \in \mathbf{Q}$, $D \in \mathbf{D}$ and $\xi = (\xi_1, \xi_2) \in \mathbb{C}^n$, $\|\xi\| = 1$ such that

$$\begin{array}{rcl} QD^{\frac{1}{2}}MD^{-\frac{1}{2}}\xi & = & \beta\xi, \\ D^{-\frac{1}{2}}M^*D^{\frac{1}{2}}Q^*\xi & = & \beta\xi, \end{array}$$

iff there exist $a = (a_1, a_2), w = (w_1, w_2), b, z \in \mathbb{C}^r \times \mathbb{C}^m$ such that (a, w) is non-degenerate and

$$\beta a = Mb, \quad z = \left(\frac{\langle a_1, w_1 \rangle}{|\langle a_1, w_1 \rangle|} w_1, \frac{||w_2||}{||a_2||} a_2\right),$$

$$\beta w = M^* z, \quad b = \left(\frac{\langle w_1, a_1 \rangle}{|\langle w_1, a_1 \rangle|} a_1, \frac{||a_2||}{||w_2||} w_2\right).$$

Sylwester Zając ()

Section 7: A lower bound algorithm

17.06.2014 11 / 16

Proof of the proposition. (\Rightarrow) We have

$$M\left(D^{-\frac{1}{2}}\xi\right) = \beta\left(D^{-\frac{1}{2}}Q^*\xi\right), \quad M^*\left(D^{\frac{1}{2}}Q^*\xi\right) = \beta\left(D^{\frac{1}{2}}\xi\right).$$

Set

$$b:=D^{-\frac{1}{2}}\xi, \quad a:=D^{-\frac{1}{2}}Q^*\xi, \quad z:=D^{\frac{1}{2}}Q^*\xi, \quad w:=D^{\frac{1}{2}}\xi.$$

(⇐) Set

$$Q = \operatorname{diag} \left(rac{\langle w_1, a_1
angle}{|\langle w_1, a_1
angle|} I_r, Q_2
ight),$$

where $Q_2 \in \mathbb{C}^{m imes m}$ is unitary and such that $Q_2 z_2 = w_2$,

$$D = \operatorname{diag}\left(D_1, \frac{\|w_2\|}{\|a_2\|}I_m\right),\,$$

where $D_1 \in \mathbb{C}^{r \times r}$ is positive and such that $D_1 a_1 = z_1$ (it exists, because $\langle a_1, z_1 \rangle > 0$), and

$$\xi := D^{\frac{1}{2}}b.$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

An iterative algorithm for a lower bound for $\mu_{\Delta}(M)$:

Take
$$a^1 = (a_1^1, a_2^1), w^1 = (w_1^1, w_2^1), b^1, z^1 \in (\mathbb{C}^r)_* \times (\mathbb{C}^m)_*$$
 such that
 $\langle a_1^1, w_1 \rangle \neq 0, \ \|a^1\| = \|b^1\| = \|z^1\| = \|w^1\| = 1.$

Define (assuming that the following definitions are proper) $\widetilde{\beta}_k, \widehat{\beta}_k \in \mathbb{R}_{>0}$, $a^k = (a_1^k, a_2^k), w^k = (w_1^k, w_2^k), b^k, z^k \in (\mathbb{C}^r)_* \times (\mathbb{C}^m)_*$ as

$$\begin{split} \widetilde{\beta}_{k+1} a^{k+1} &:= Mb^k \text{ with } \|a^{k+1}\| = 1 \\ z^{k+1} &:= \left(\frac{\langle a_1^{k+1}, w_1^k \rangle}{|\langle a_1^{k+1}, w_1^k \rangle|} w_1^k, \frac{\|w_2^k\|}{\|a_2^{k+1}\|} a_2^{k+1} \right), \\ \widehat{\beta}_{k+1} w^{k+1} &:= M^* z^{k+1} \text{ with } \|w^{k+1}\| = 1 \\ b^{k+1} &:= \left(\frac{\langle w_1^{k+1}, a_1^{k+1} \rangle}{|\langle w_1^{k+1}, a_1^{k+1} \rangle|} a_1^{k+1}, \frac{\|a_2^{k+1}\|}{\|w_2^{k+1}\|} w_2^{k+1} \right). \end{split}$$

We have

$$||a^{k}|| = ||b^{k}|| = ||w^{k}|| = ||z^{k}|| = 1.$$

Sylwester Zając ()

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

If
$$\widehat{\beta}_k$$
, $\widetilde{\beta}_k$, a_k , b_k , w_k , z_k converge (respectively) to some $\widehat{\beta}, \widetilde{\beta} \in \mathbb{R}_{>0}$,
 $a = (a_1, a_2), w = (w_1, w_2), b, z \in \mathbb{C}^r \times \mathbb{C}^m$ with (a, w) being non-degenerate, then
 $\widehat{\beta} = \widetilde{\beta} \le \mu_\Delta(M)$.

Proof: We have

$$\begin{split} \widetilde{\beta} \mathbf{a} &= Mb, \quad z = \left(\frac{\langle \mathbf{a}_1, \mathbf{w}_1 \rangle}{|\langle \mathbf{a}_1, \mathbf{w}_1 \rangle|} \mathbf{w}_1, \frac{\|\mathbf{w}_2\|}{\|\mathbf{a}_2\|} \mathbf{a}_2\right), \\ \widehat{\beta} \mathbf{w} &= M^* z, \quad b = \left(\frac{\langle \mathbf{w}_1, \mathbf{a}_1 \rangle}{|\langle \mathbf{w}_1, \mathbf{a}_1 \rangle|} \mathbf{a}_1, \frac{\|\mathbf{a}_2\|}{\|\mathbf{w}_2\|} \mathbf{w}_2\right). \end{split}$$

Thus

$$\widetilde{eta}\langle \mathsf{a},\mathsf{z}
angle = \langle \mathsf{M}\mathsf{b},\mathsf{z}
angle = \langle \mathsf{b},\mathsf{M}^*\mathsf{z}
angle = \widehat{eta}\langle \mathsf{b},\mathsf{w}
angle = \widehat{eta}\langle \mathsf{a},\mathsf{z}
angle,$$

so $\widehat{\beta}=\widetilde{\beta}.$ Now apply the previous proposition.

・ロト ・四ト ・ヨト ・ヨト

In practice:

• If the algorithm seems to converge, i.e. if $\widehat{\beta}_k \approx \widetilde{\beta}_k$, then $\widehat{\beta}_k$ and $\widetilde{\beta}_k$ approximate some lower bound of $\mu_{\Delta}(M)$.

In practice:

- If the algorithm seems to converge, i.e. if $\widehat{\beta}_k \approx \widetilde{\beta}_k$, then $\widehat{\beta}_k$ and $\widetilde{\beta}_k$ approximate some lower bound of $\mu_{\Delta}(M)$.
- In the opposite case we can just restart the algorithm with different initial points.

・ロト ・回ト ・ヨト ・ヨ

In practice:

- If the algorithm seems to converge, i.e. if $\widehat{\beta}_k \approx \widetilde{\beta}_k$, then $\widehat{\beta}_k$ and $\widetilde{\beta}_k$ approximate some lower bound of $\mu_{\Delta}(M)$.
- In the opposite case we can just restart the algorithm with different initial points.
- After some modifications of the algorithm it is possible to avoid the problems with definition of the sequences or with non-convergence.

イロト イポト イヨト イヨ

Thank you for attention.

イロト イヨト イヨト イヨト