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As previously, we consider a block structure

∆ =
{
diag (δ1Ir1 , . . . , δnIrn ,∆S+1, . . . ,∆S+F ) : δj ∈ C,∆S+j ∈ Cmj×mj

}
,

where
r1 + . . . ,+rS + m1 + . . .+ mF = n.

Recall that for M ∈ Cn×n

µ∆(M) = max
∆∈B∆

ρ(∆M) = max
Q∈Q

ρ(QM)

and

B∆ = {∆ ∈ ∆ : σ̄(∆) ≤ 1},
Q = {Q ∈ ∆ : Q is unitary},
D = {diag (D1, . . . ,DS , dS+1Im1 , . . . , dS+F ImF

) :

Dj ∈ Crj×rj ,Dj > 0, dS+j ∈ R>0}.

Note that every D ∈ D and ∆ ∈ ∆ commute.
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Observation

Let M ∈ Cn×n, β > 0. If there exist Q ∈ Q, D ∈ D, ξ ∈ Cn, ‖ξ‖ = 1 such that

QD
1
2MD−

1
2 ξ = βξ, (1)

D−
1
2M∗D

1
2Q∗ξ = βξ, (2)

then

β ≤ µ∆(M).

Putting η = ‖D− 1
2 ξ‖−1D− 1

2 ξ we obtain that (1) and (2) are equivalent to

∃ η ∈ Cn, ‖η‖ = 1 : QMη = βη, (QM)∗Dη = βDη. (3)

Proof of Observation: β is an eigenvalue of QM, so β ≤ ρ(QM) ≤ µ∆(M)
(actually, here we use only (1)).
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Example

S = 1, F = 0, r1 = 2, ∆ = {diag (δ, δ) : δ ∈ C}.

M :=

[
3 −1
1 1

]
.

We have det(qM − λ) = (2q − λ)2 and hence

µ∆(M) = max
|q|=1

ρ(QM) = 2,

but there is no β > 0 which satis�es (1) and (2) (although there is much β's
satisfying (1) with some Q, D, ξ).

Indeed, (1) and (2) hold i� (3) hold with some Q ∈ Q, D ∈ D, ‖η‖ = 1. This
gives Q = I2, β = 2 and

η ∈ R · (1, 1), Dη ∈ R · (1,−1).

Hence 0 = 〈Dη, η〉 > 0, a contradiction.
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Example

S = 1, F = 0, r1 = 3, ∆ = {diag (δ, δ, δ) : δ ∈ C}.

M :=

3 −1 0
1 1 0
0 0 1

 .
We have det(qM − λ) = (2q − λ)2(q − λ) and hence

µ∆(M) = max
|q|=1

ρ(QM) = 2,

but the only β > 0 which satis�es (1) and (2) is β = 1.
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Let x , y ∈ Cn. Write them compatibly to ∆:

x = (x1, . . . , xS , xS+1, . . . , xS+F ) ∈ Cr1 × . . .× CrS × Cm1 × . . .× CmF = Cn,

y = (y1, . . . , yS , yS+1, . . . , yS+F ) ∈ Cr1 × . . .× CrS × Cm1 × . . .× CmF = Cn.

We say that the pair (x , y) is non-degenerate (with respect to ∆), if

〈x1, y1〉, . . . , 〈xS , yS〉 6= 0 and xS+1, yS+1 6= 0, . . . , xS+F , yS+F 6= 0.

Theorem

Let M ∈ Cn×n. Assume that there exists Q0 ∈ Q such that:

ρ(Q0M) = maxQ∈Q ρ(QM) > 0,

ρ(Q0M) is a distinct eigenvalue of Q0M,

there exist a non-degenerate pair (x , y) ∈ Cn × Cn such that

Q0Mx = ρ(Q0M)x , (Q0M)∗y = ρ(Q0M)y .

Then there exists D ∈ D and ξ ∈ Cn, ‖ξ‖ = 1 such that

Q0D
1
2MD−

1
2 ξ = µ∆(M)ξ,

D−
1
2M∗D

1
2Q∗

0
ξ = µ∆(M)ξ.
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Lemma

Let x , y ∈ Cn be non-degenerate vectors. Then the following are equivalent:

1 there exists D ∈ D such that y = Dx.

2 for every G ∈ ∆ such that G + G∗ ≤ 0, GG∗ = G∗G there is Re 〈Gx , y〉 ≤ 0.

Proof of the lemma. (1) ⇒ (2): D and G commute and y = Dx , so

〈Gx , y〉 = 〈Gx ,D 1
2D

1
2 x〉 = 〈D 1

2Gx ,D
1
2 x〉 = 〈GD 1

2 x ,D
1
2 x〉,

〈Gx , y〉 = 〈D 1
2 x ,GD

1
2 x〉 = 〈G∗D 1

2 x ,D
1
2 x〉.

Hence
2Re 〈Gx , y〉 = 〈(G + G∗)D

1
2 x ,D

1
2 x〉 ≤ 0.

(2) ⇒ (1): It su�ces to prove it for each block separately, so in fact we need to
consider only two cases:

∆ = Cn×n,

∆ = {diag (δ, . . . , δ) : δ ∈ C}.
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The case ∆ = Cn×n. Since

D = {diag (d , . . . , d) : d ∈ R>0} ,

we have to prove that y = dx for some d > 0. We may assume that

‖x‖ = ‖y‖ = 1.

There exists an unitary matrix U ∈ Cn×n such that

Ux = y .

We have
U = P∗JP

for some unitary matrices P, J ∈ Cn×n, J = diag (ζ1, . . . , ζn), ζj ∈ T. Write

Px = (a1, . . . , an).

There is
Py = JPx = (ζ1a1, . . . , ζnan).

It su�ces to show that ajζj = aj for every j .
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Without loss of generality: j = 1.
Suppose that a1ζ1 6= a1, i.e. a1 6= 0 and ζ1 6= 1. There exists η1 ∈ T such that

Re η1 ≤ 0, Re (η1ζ̄1) > 0.

Let
G := P∗diag (η1, 0, . . . , 0)P

We have

0 ≥ Re 〈Gx , y〉 = 〈diag (η1, 0, . . . , 0)Px ,Py〉
= 〈(η1a1, 0, . . . , 0), (a1ζ1, . . . , anζn)〉
= |a1|2Re (η1ζ̄1) > 0,

a contradiction.

The case ∆ = {diag (δ, . . . , δ) : δ ∈ C}. We have

D = {D ∈ Cn×n : D > 0},

Existence of D such that Dx = y follows from the fact that 〈x , y〉 > 0.
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Proof of the theorem. Step 1: If Q0 = I , then there exists D ∈ D such that

y = Dx .

Proof of step 1: Let G ∈ ∆, G + G∗ ≤ 0, GG∗ = G∗G . It su�ces to show that

Re 〈Gx , y〉 ≤ 0.

De�ne
W (t) := etGM, t ≥ 0.

ρ(M) is a distinct eigenvalue of M, so 〈x , y〉 6= 0 and we may assume 〈x , y〉 = 1.

There are ε > 0 and R-analytic maps X ,Y : (−ε, ε)→ Cn, λ : (−ε, ε)→ C s.t.

λ(0) = ρ(W (0)) = ρ(M), X (0) = x , Y (0) = y ,

λ(t) is a distinct eigenvalue of W (t),

|λ(t)| = ρ(W (t)),

W (t)X (t) = λ(t)X (t), W (t)∗Y (t) = λ(t)Y (t),

〈X (t),Y (t)〉 = 1.
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Since GG∗ = G∗G , we have

etG ∈ B∆, t ≥ 0,

so the function [0, ε) 3 t 7→ Reλ(t) has a maximum at t = 0. There holds

λ′(0) = 〈W ′(0)x , y〉.

Hence

0 ≥ Reλ′(0) = Re 〈W ′(0)x , y〉 = Re 〈GMx , y〉 = ρ(M)Re 〈Gx , y〉.

Step 2: We prove the conclusion.

By step 1 for M̃ := Q0M we have y = Dx for some D ∈ D. Put

ξ = D
1
2 x = D−

1
2 y .

As Q0 and D
1
2 commute, we have

Q0D
1
2MD−

1
2 ξ = D

1
2Q0MD−

1
2D

1
2 x = ρ(Q0M)D

1
2 x = µ∆(M)ξ

and similarly we obtain the condition (2).
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From now, for simplicity: S = F = 1, r + m = n, i.e.

∆ =
{
diag (δ1Ir ,∆2) : δ1 ∈ C,∆2 ∈ Cm×m} ,

D =
{
diag (D1, d2Im) : D1 ∈ Cr×r ,D1 > 0, d2 ∈ R>0

}
.

Proposition

Let M ∈ Cn×n, β > 0. Then there exist Q ∈ Q, D ∈ D and ξ = (ξ1, ξ2) ∈ Cn,

‖ξ‖ = 1 such that

QD
1
2MD−

1
2 ξ = βξ,

D−
1
2M∗D

1
2Q∗ξ = βξ,

i� there exist a = (a1, a2),w = (w1,w2), b, z ∈ Cr × Cm such that (a,w) is

non-degenerate and

βa = Mb, z =
(
〈a1,w1〉
|〈a1,w1〉|w1,

‖w2‖
‖a2‖ a2

)
,

βw = M∗z , b =
(
〈w1,a1〉
|〈w1,a1〉|a1,

‖a2‖
‖w2‖w2

)
.
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Proof of the proposition. (⇒) We have

M
(
D−

1
2 ξ
)

= β
(
D−

1
2Q∗ξ

)
, M∗

(
D

1
2Q∗ξ

)
= β

(
D

1
2 ξ
)
.

Set
b := D−

1
2 ξ, a := D−

1
2Q∗ξ, z := D

1
2Q∗ξ, w := D

1
2 ξ.

(⇐) Set

Q = diag

(
〈w1, a1〉
|〈w1, a1〉|

Ir ,Q2

)
,

where Q2 ∈ Cm×m is unitary and such that Q2z2 = w2,

D = diag

(
D1,
‖w2‖
‖a2‖

Im

)
,

where D1 ∈ Cr×r is positive and such that D1a1 = z1 (it exists, because
〈a1, z1〉 > 0), and

ξ := D
1
2 b.
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An iterative algorithm for a lower bound for µ∆(M):

Take a1 = (a1
1
, a1

2
),w1 = (w1

1
,w1

2
), b1, z1 ∈ (Cr )∗ × (Cm)∗ such that

〈a1
1
,w1〉 6= 0, ‖a1‖ = ‖b1‖ = ‖z1‖ = ‖w1‖ = 1.

De�ne (assuming that the following de�nitions are proper) β̃k , β̂k ∈ R>0,
ak = (ak

1
, ak

2
),wk = (wk

1
,wk

2
), bk , zk ∈ (Cr )∗ × (Cm)∗ as

β̃k+1a
k+1 := Mbk with ‖ak+1‖ = 1

zk+1 :=

(
〈ak+1

1
,wk

1
〉

|〈ak+1

1
,wk

1
〉|
wk
1
,
‖wk

2
‖

‖ak+1

2
‖
ak+1

2

)
,

β̂k+1w
k+1 := M∗zk+1 with ‖wk+1‖ = 1

bk+1 :=

(
〈wk+1

1
, ak+1

1
〉

|〈wk+1

1
, ak+1

1
〉|
ak+1

1
,
‖ak+1

2
‖

‖wk+1

2
‖
wk+1

2

)
.

We have
‖ak‖ = ‖bk‖ = ‖wk‖ = ‖zk‖ = 1.
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If β̂k , β̃k , ak , bk , wk , zk converge (respectively) to some β̂, β̃ ∈ R>0,
a = (a1, a2),w = (w1,w2), b, z ∈ Cr ×Cm with (a,w) being non-degenerate, then

β̂ = β̃ ≤ µ∆(M).

Proof: We have

β̃a = Mb, z =
(
〈a1,w1〉
|〈a1,w1〉|w1,

‖w2‖
‖a2‖ a2

)
,

β̂w = M∗z , b =
(
〈w1,a1〉
|〈w1,a1〉|a1,

‖a2‖
‖w2‖w2

)
.

Thus
β̃〈a, z〉 = 〈Mb, z〉 = 〈b,M∗z〉 = β̂〈b,w〉 = β̂〈a, z〉,

so β̂ = β̃. Now apply the previous proposition.
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In practice:

If the algorithm seems to converge, i.e. if β̂k ≈ β̃k , then β̂k and β̃k
approximate some lower bound of µ∆(M).

In the opposite case we can just restart the algorithm with di�erent initial
points.

After some modi�cations of the algorithm it is possible to avoid the problems
with de�nition of the sequences or with non-convergence.
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Thank you for attention.
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