Section 7: A lower bound algorithm

Sylwester Zając

17.06 .2014

As previously, we consider a block structure

$$
\Delta=\left\{\operatorname{diag}\left(\delta_{1} I_{r_{1}}, \ldots, \delta_{n} I_{r_{n}}, \Delta_{S_{+1}}, \ldots, \Delta_{S+F}\right): \delta_{j} \in \mathbb{C}, \Delta_{S_{+j}} \in \mathbb{C}^{m_{j} \times m_{j}}\right\}
$$

where

$$
r_{1}+\ldots,+r_{s}+m_{1}+\ldots+m_{F}=n .
$$

Recall that for $M \in \mathbb{C}^{n \times n}$

$$
\mu_{\Delta}(M)=\max _{\Delta \in \mathbf{B}_{\Delta}} \rho(\Delta M)=\max _{Q \in \mathbf{Q}} \rho(Q M)
$$

and

\[

\]

Note that every $D \in \mathbf{D}$ and $\Delta \in \Delta$ commute.

Observation

Let $M \in \mathbb{C}^{n \times n}, \beta>0$. If there exist $Q \in \mathbf{Q}, D \in \mathbf{D}, \xi \in \mathbb{C}^{n},\|\xi\|=1$ such that

$$
\begin{align*}
Q D^{\frac{1}{2}} M D^{-\frac{1}{2}} \xi & =\beta \xi, \tag{1}\\
D^{-\frac{1}{2}} M^{*} D^{\frac{1}{2}} Q^{*} \xi & =\beta \xi \tag{2}
\end{align*}
$$

then

$$
\beta \leq \mu_{\Delta}(M)
$$

Putting $\eta=\left\|D^{-\frac{1}{2}} \xi\right\|^{-1} D^{-\frac{1}{2}} \xi$ we obtain that (1) and (2) are equivalent to

$$
\begin{equation*}
\exists \eta \in \mathbb{C}^{n},\|\eta\|=1: \quad Q M \eta=\beta \eta, \quad(Q M)^{*} D \eta=\beta D \eta \tag{3}
\end{equation*}
$$

Proof of Observation: β is an eigenvalue of $Q M$, so $\beta \leq \rho(Q M) \leq \mu_{\Delta}(M)$ (actually, here we use only (1)).

Example

$S=1, F=0, r_{1}=2, \Delta=\{\operatorname{diag}(\delta, \delta): \delta \in \mathbb{C}\}$.

$$
M:=\left[\begin{array}{cc}
3 & -1 \\
1 & 1
\end{array}\right] .
$$

We have $\operatorname{det}(q M-\lambda)=(2 q-\lambda)^{2}$ and hence

$$
\mu_{\Delta}(M)=\max _{|q|=1} \rho(Q M)=2,
$$

but there is no $\beta>0$ which satisfies (1) and (2) (although there is much β 's satisfying (1) with some $Q, D, \xi)$.

Example

$S=1, F=0, r_{1}=2, \Delta=\{\operatorname{diag}(\delta, \delta): \delta \in \mathbb{C}\}$.

$$
M:=\left[\begin{array}{cc}
3 & -1 \\
1 & 1
\end{array}\right] .
$$

We have $\operatorname{det}(q M-\lambda)=(2 q-\lambda)^{2}$ and hence

$$
\mu_{\Delta}(M)=\max _{|q|=1} \rho(Q M)=2,
$$

but there is no $\beta>0$ which satisfies (1) and (2) (although there is much β 's satisfying (1) with some $Q, D, \xi)$.
Indeed, (1) and (2) hold iff (3) hold with some $Q \in \mathbf{Q}, D \in \mathbf{D},\|\eta\|=1$. This gives $Q=I_{2}, \beta=2$ and

$$
\eta \in \mathbb{R} \cdot(1,1), \quad D \eta \in \mathbb{R} \cdot(1,-1) .
$$

Hence $0=\langle D \eta, \eta\rangle>0$, a contradiction.

Example

$S=1, F=0, r_{1}=3, \Delta=\{\operatorname{diag}(\delta, \delta, \delta): \delta \in \mathbb{C}\}$.

$$
M:=\left[\begin{array}{ccc}
3 & -1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

We have $\operatorname{det}(q M-\lambda)=(2 q-\lambda)^{2}(q-\lambda)$ and hence

$$
\mu_{\Delta}(M)=\max _{|q|=1} \rho(Q M)=2
$$

but the only $\beta>0$ which satisfies (1) and (2) is $\beta=1$.

Let $x, y \in \mathbb{C}^{n}$. Write them compatibly to Δ :
$x=\left(x_{1}, \ldots, x_{S}, x_{S+1}, \ldots, x_{S+F}\right) \in \mathbb{C}^{r_{1}} \times \ldots \times \mathbb{C}^{r_{s}} \times \mathbb{C}^{m_{1}} \times \ldots \times \mathbb{C}^{m_{F}}=\mathbb{C}^{n}$,
$y=\left(y_{1}, \ldots, y_{s}, y_{s+1}, \ldots, y_{s+F}\right) \in \mathbb{C}^{r_{1}} \times \ldots \times \mathbb{C}^{r_{s}} \times \mathbb{C}^{m_{1}} \times \ldots \times \mathbb{C}^{m_{F}}=\mathbb{C}^{n}$.
We say that the pair (x, y) is non-degenerate (with respect to Δ), if

$$
\left\langle x_{1}, y_{1}\right\rangle, \ldots,\left\langle x_{S}, y_{S}\right\rangle \neq 0 \text { and } x_{S+1}, y_{s+1} \neq 0, \ldots, x_{S+F}, y_{s+F} \neq 0
$$

Theorem

Let $M \in \mathbb{C}^{n \times n}$. Assume that there exists $Q_{0} \in \mathbf{Q}$ such that:

- $\rho\left(Q_{0} M\right)=\max _{Q \in \mathbf{Q}} \rho(Q M)>0$,
- $\rho\left(Q_{0} M\right)$ is a distinct eigenvalue of $Q_{0} M$,
- there exist a non-degenerate pair $(x, y) \in \mathbb{C}^{n} \times \mathbb{C}^{n}$ such that

$$
Q_{0} M x=\rho\left(Q_{0} M\right) x, \quad\left(Q_{0} M\right)^{*} y=\rho\left(Q_{0} M\right) y
$$

Then there exists $D \in \mathbf{D}$ and $\xi \in \mathbb{C}^{n},\|\xi\|=1$ such that

$$
\begin{aligned}
Q_{0} D^{\frac{1}{2}} M D^{-\frac{1}{2}} \xi & =\mu_{\Delta}(M) \xi \\
D^{-\frac{1}{2}} M^{*} D^{\frac{1}{2}} Q_{0}^{*} \xi & =\mu_{\Delta}(M) \xi
\end{aligned}
$$

Lemma

Let $x, y \in \mathbb{C}^{n}$ be non-degenerate vectors. Then the following are equivalent:
(1) there exists $D \in \mathbf{D}$ such that $y=D x$.
(2) for every $G \in \Delta$ such that $G+G^{*} \leq 0, G G^{*}=G^{*} G$ there is $\operatorname{Re}\langle G x, y\rangle \leq 0$.

Proof of the lemma. (1) $\Rightarrow(2): D$ and G commute and $y=D x$, so

$$
\begin{gathered}
\langle G x, y\rangle=\left\langle G x, D^{\frac{1}{2}} D^{\frac{1}{2}} x\right\rangle=\left\langle D^{\frac{1}{2}} G x, D^{\frac{1}{2}} x\right\rangle=\left\langle G D^{\frac{1}{2}} x, D^{\frac{1}{2}} x\right\rangle, \\
\overline{\langle G x, y\rangle}=\left\langle D^{\frac{1}{2}} x, G D^{\frac{1}{2}} x\right\rangle=\left\langle G^{*} D^{\frac{1}{2}} x, D^{\frac{1}{2}} x\right\rangle .
\end{gathered}
$$

Hence

$$
2 \operatorname{Re}\langle G x, y\rangle=\left\langle\left(G+G^{*}\right) D^{\frac{1}{2}} x, D^{\frac{1}{2}} x\right\rangle \leq 0
$$

$(2) \Rightarrow(1)$: It suffices to prove it for each block separately, so in fact we need to consider only two cases:

- $\Delta=\mathbb{C}^{n \times n}$,
- $\Delta=\{\operatorname{diag}(\delta, \ldots, \delta): \delta \in \mathbb{C}\}$.

The case $\Delta=\mathbb{C}^{n \times n}$. Since

$$
\mathbf{D}=\left\{\operatorname{diag}(d, \ldots, d): d \in \mathbb{R}_{>0}\right\},
$$

we have to prove that $y=d x$ for some $d>0$. We may assume that

$$
\|x\|=\|y\|=1
$$

There exists an unitary matrix $U \in \mathbb{C}^{n \times n}$ such that

$$
U x=y
$$

We have

$$
U=P^{*} J P
$$

for some unitary matrices $P, J \in \mathbb{C}^{n \times n}, J=\operatorname{diag}\left(\zeta_{1}, \ldots, \zeta_{n}\right), \zeta_{j} \in \mathbb{T}$. Write

$$
P x=\left(a_{1}, \ldots, a_{n}\right) .
$$

There is

$$
P y=J P x=\left(\zeta_{1} a_{1}, \ldots, \zeta_{n} a_{n}\right) .
$$

It suffices to show that $a_{j} \zeta_{j}=a_{j}$ for every j.

Without loss of generality: $j=1$.
Suppose that $a_{1} \zeta_{1} \neq a_{1}$, i.e. $a_{1} \neq 0$ and $\zeta_{1} \neq 1$. There exists $\eta_{1} \in \mathbb{T}$ such that

$$
\operatorname{Re} \eta_{1} \leq 0, \operatorname{Re}\left(\eta_{1} \bar{\zeta}_{1}\right)>0
$$

Let

$$
G:=P^{*} \operatorname{diag}\left(\eta_{1}, 0, \ldots, 0\right) P
$$

We have

$$
\begin{aligned}
0 \geq \operatorname{Re}\langle G x, y\rangle & =\left\langle\operatorname{diag}\left(\eta_{1}, 0, \ldots, 0\right) P x, P y\right\rangle \\
& =\left\langle\left(\eta_{1} a_{1}, 0, \ldots, 0\right),\left(a_{1} \zeta_{1}, \ldots, a_{n} \zeta_{n}\right)\right\rangle \\
& =\left|a_{1}\right|^{2} \operatorname{Re}\left(\eta_{1} \bar{\zeta}_{1}\right)>0
\end{aligned}
$$

a contradiction.
The case $\Delta=\{\operatorname{diag}(\delta, \ldots, \delta): \delta \in \mathbb{C}\}$. We have

$$
\mathbf{D}=\left\{D \in \mathbb{C}^{n \times n}: D>0\right\}
$$

Existence of D such that $D x=y$ follows from the fact that $\langle x, y\rangle>0$.

Proof of the theorem. Step 1: If $Q_{0}=I$, then there exists $D \in \mathbf{D}$ such that

$$
y=D x .
$$

Proof of step 1: Let $G \in \Delta, G+G^{*} \leq 0, G G^{*}=G^{*} G$. It suffices to show that

$$
\operatorname{Re}\langle G x, y\rangle \leq 0 .
$$

Define

$$
W(t):=e^{t G} M, t \geq 0
$$

$\rho(M)$ is a distinct eigenvalue of M, so $\langle x, y\rangle \neq 0$ and we may assume $\langle x, y\rangle=1$. There are $\epsilon>0$ and \mathbb{R}-analytic maps $X, Y:(-\epsilon, \epsilon) \rightarrow \mathbb{C}^{n}, \lambda:(-\epsilon, \epsilon) \rightarrow \mathbb{C}$ s.t.

- $\lambda(0)=\rho(W(0))=\rho(M), X(0)=x, Y(0)=y$,
- $\lambda(t)$ is a distinct eigenvalue of $W(t)$,
- $|\lambda(t)|=\rho(W(t))$,
- $W(t) X(t)=\lambda(t) X(t), W(t)^{*} Y(t)=\overline{\lambda(t)} Y(t)$,
- $\langle X(t), Y(t)\rangle=1$.

Since $G G^{*}=G^{*} G$, we have

$$
e^{t G} \in \mathbf{B}_{\Delta}, t \geq 0
$$

so the function $[0, \epsilon) \ni t \mapsto \operatorname{Re} \lambda(t)$ has a maximum at $t=0$. There holds

$$
\lambda^{\prime}(0)=\left\langle W^{\prime}(0) x, y\right\rangle .
$$

Hence

$$
0 \geq \operatorname{Re} \lambda^{\prime}(0)=\operatorname{Re}\left\langle W^{\prime}(0) x, y\right\rangle=\operatorname{Re}\langle G M x, y\rangle=\rho(M) \operatorname{Re}\langle G x, y\rangle .
$$

Step 2: We prove the conclusion.
By step 1 for $\widetilde{M}:=Q_{0} M$ we have $y=D x$ for some $D \in \mathbf{D}$. Put

$$
\xi=D^{\frac{1}{2}} x=D^{-\frac{1}{2}} y .
$$

As Q_{0} and $D^{\frac{1}{2}}$ commute, we have

$$
Q_{0} D^{\frac{1}{2}} M D^{-\frac{1}{2}} \xi=D^{\frac{1}{2}} Q_{0} M D^{-\frac{1}{2}} D^{\frac{1}{2}} x=\rho\left(Q_{0} M\right) D^{\frac{1}{2}} x=\mu_{\Delta}(M) \xi
$$

and similarly we obtain the condition (2).

From now, for simplicity: $S=F=1, r+m=n$, i.e.

$$
\begin{aligned}
\Delta & =\left\{\operatorname{diag}\left(\delta_{1} I_{r}, \Delta_{2}\right): \delta_{1} \in \mathbb{C}, \Delta_{2} \in \mathbb{C}^{m \times m}\right\} \\
\mathbf{D} & =\left\{\operatorname{diag}\left(D_{1}, d_{2} I_{m}\right): D_{1} \in \mathbb{C}^{r \times r}, D_{1}>0, d_{2} \in \mathbb{R}_{>0}\right\}
\end{aligned}
$$

Proposition

Let $M \in \mathbb{C}^{n \times n}, \beta>0$. Then there exist $Q \in \mathbf{Q}, D \in \mathbf{D}$ and $\xi=\left(\xi_{1}, \xi_{2}\right) \in \mathbb{C}^{n}$, $\|\xi\|=1$ such that

$$
\begin{aligned}
Q D^{\frac{1}{2}} M D^{-\frac{1}{2}} \xi & =\beta \xi, \\
D^{-\frac{1}{2}} M^{*} D^{\frac{1}{2}} Q^{*} \xi & =\beta \xi,
\end{aligned}
$$

iff there exist $a=\left(a_{1}, a_{2}\right), w=\left(w_{1}, w_{2}\right), b, z \in \mathbb{C}^{r} \times \mathbb{C}^{m}$ such that (a, w) is non-degenerate and

$$
\begin{aligned}
\beta a=M b, & z=\left(\frac{\left\langle a_{1}, w_{1}\right\rangle}{\left\langle\left\langle a_{1}, w_{1}\right\rangle\right.} w_{1}, \frac{\left\|w_{2}\right\|}{\left\|a_{2}\right\|} a_{2}\right), \\
\beta w=M^{*} z, & b=\left(\frac{\left\langle w_{1}, a_{1}\right\rangle}{\left\langle\left\langle w_{1}, a_{1}\right\rangle\right.} a_{1}, \frac{\left\|a_{2}\right\|}{\left\|w_{2}\right\|} w_{2}\right) .
\end{aligned}
$$

Proof of the proposition. (\Rightarrow) We have

$$
M\left(D^{-\frac{1}{2}} \xi\right)=\beta\left(D^{-\frac{1}{2}} Q^{*} \xi\right), \quad M^{*}\left(D^{\frac{1}{2}} Q^{*} \xi\right)=\beta\left(D^{\frac{1}{2}} \xi\right) .
$$

Set

$$
b:=D^{-\frac{1}{2}} \xi, \quad a:=D^{-\frac{1}{2}} Q^{*} \xi, \quad z:=D^{\frac{1}{2}} Q^{*} \xi, \quad w:=D^{\frac{1}{2}} \xi
$$

(\Leftarrow) Set

$$
Q=\operatorname{diag}\left(\frac{\left\langle w_{1}, a_{1}\right\rangle}{\left|\left\langle w_{1}, a_{1}\right\rangle\right|} I_{r}, Q_{2}\right),
$$

where $Q_{2} \in \mathbb{C}^{m \times m}$ is unitary and such that $Q_{2} z_{2}=w_{2}$,

$$
D=\operatorname{diag}\left(D_{1}, \frac{\left\|w_{2}\right\|}{\left\|a_{2}\right\|} I_{m}\right),
$$

where $D_{1} \in \mathbb{C}^{r \times r}$ is positive and such that $D_{1} a_{1}=z_{1}$ (it exists, because $\left\langle a_{1}, z_{1}\right\rangle>0$), and

$$
\xi:=D^{\frac{1}{2}} b .
$$

An iterative algorithm for a lower bound for $\mu_{\Delta}(M)$:
Take $a^{1}=\left(a_{1}^{1}, a_{2}^{1}\right), w^{1}=\left(w_{1}^{1}, w_{2}^{1}\right), b^{1}, z^{1} \in\left(\mathbb{C}^{r}\right)_{*} \times\left(\mathbb{C}^{m}\right)_{*}$ such that

$$
\left\langle a_{1}^{1}, w_{1}\right\rangle \neq 0,\left\|a^{1}\right\|=\left\|b^{1}\right\|=\left\|z^{1}\right\|=\left\|w^{1}\right\|=1 .
$$

Define (assuming that the following definitions are proper) $\widetilde{\beta}_{k}, \widehat{\beta}_{k} \in \mathbb{R}_{>0}$, $a^{k}=\left(a_{1}^{k}, a_{2}^{k}\right), w^{k}=\left(w_{1}^{k}, w_{2}^{k}\right), b^{k}, z^{k} \in\left(\mathbb{C}^{r}\right)_{*} \times\left(\mathbb{C}^{m}\right)_{*}$ as

$$
\begin{aligned}
\widetilde{\beta}_{k+1} a^{k+1} & :=M b^{k} \text { with }\left\|a^{k+1}\right\|=1 \\
z^{k+1} & :=\left(\frac{\left\langle a_{1}^{k+1}, w_{1}^{k}\right\rangle}{\left|\left\langle a_{1}^{k+1}, w_{1}^{k}\right\rangle\right|} w_{1}^{k}, \frac{\left\|w_{2}^{k}\right\|}{\left\|a_{2}^{k+1}\right\|} a_{2}^{k+1}\right), \\
\widehat{\beta}_{k+1} w^{k+1} & :=M^{*} z^{k+1} \text { with \|w} w^{k+1} \|=1 \\
b^{k+1} & :=\left(\frac{\left\langle w_{1}^{k+1}, a_{1}^{k+1}\right\rangle}{\left|\left\langle w_{1}^{k+1}, a_{1}^{k+1}\right\rangle\right|} a_{1}^{k+1}, \frac{\left\|a_{2}^{k+1}\right\|}{\left\|w_{2}^{k+1}\right\|} w_{2}^{k+1}\right) .
\end{aligned}
$$

We have

$$
\left\|a^{k}\right\|=\left\|b^{k}\right\|=\left\|w^{k}\right\|=\left\|z^{k}\right\|=1
$$

If $\widehat{\beta}_{k}, \widetilde{\beta}_{k}, a_{k}, b_{k}, w_{k}, z_{k}$ converge (respectively) to some $\widehat{\beta}, \widetilde{\beta} \in \mathbb{R}_{>0}$, $a=\left(a_{1}, a_{2}\right), w=\left(w_{1}, w_{2}\right), b, z \in \mathbb{C}^{r} \times \mathbb{C}^{m}$ with (a, w) being non-degenerate, then

$$
\widehat{\beta}=\widetilde{\beta} \leq \mu_{\Delta}(M) .
$$

Proof: We have

$$
\begin{aligned}
\widetilde{\beta} a=M b, & z=\left(\frac{\left\langle a_{1}, w_{1}\right\rangle}{\left|\left\langle a_{1}, w_{1}\right\rangle\right|} w_{1}, \frac{\left\|w_{2}\right\|}{\left\|a_{2}\right\|} a_{2}\right), \\
\widehat{\beta} w=M^{*} z, & b=\left(\frac{\left\langle w_{1}, a_{1}\right\rangle}{\left\langle\left\langle w_{1}, a_{1}\right\rangle\right|} a_{1}, \frac{\left\|a_{2}\right\|}{\left\|w_{2}\right\|} w_{2}\right) .
\end{aligned}
$$

Thus

$$
\widetilde{\beta}\langle a, z\rangle=\langle M b, z\rangle=\left\langle b, M^{*} z\right\rangle=\widehat{\beta}\langle b, w\rangle=\widehat{\beta}\langle a, z\rangle,
$$

so $\widehat{\beta}=\widetilde{\beta}$. Now apply the previous proposition.

In practice:

- If the algorithm seems to converge, i.e. if $\widehat{\beta}_{k} \approx \widetilde{\beta}_{k}$, then $\widehat{\beta}_{k}$ and $\widetilde{\beta}_{k}$ approximate some lower bound of $\mu_{\Delta}(M)$.

In practice:

- If the algorithm seems to converge, i.e. if $\widehat{\beta}_{k} \approx \widetilde{\beta}_{k}$, then $\widehat{\beta}_{k}$ and $\widetilde{\beta}_{k}$ approximate some lower bound of $\mu_{\Delta}(M)$.
- In the opposite case we can just restart the algorithm with different initial points.

In practice:

- If the algorithm seems to converge, i.e. if $\widehat{\beta}_{k} \approx \widetilde{\beta}_{k}$, then $\widehat{\beta}_{k}$ and $\widetilde{\beta}_{k}$ approximate some lower bound of $\mu_{\Delta}(M)$.
- In the opposite case we can just restart the algorithm with different initial points.
- After some modifications of the algorithm it is possible to avoid the problems with definition of the sequences or with non-convergence.

Thank you for attention.

