Local Spectral Theory for Normal Operators in Krein Spaces

Carsten Trunk

Abstract

Let N be a bounded normal operator in a Krein space $(\mathcal{H}, [\cdot, \cdot])$. Recall that a bounded operator N in a Krein space is normal if $NN^+ = N^+N$, where N^+ denotes the adjoint operator of N with respect to $[\cdot, \cdot]$. A point λ of the approximative point spectrum $\sigma_{ap}(N)$ of N is called a spectral point of positive (negative) type, if for every normed approximative eigensequence (x_n) corresponding to λ all accumulation points of the sequence $([x_n, x_n])$ are positive (resp. negative).

The spectral theory for normal operators in Krein spaces is a rather underdeveloped subject and most results are based on the definitizability of the real and the imaginary part of N. We will present a somewhat different approach.

We investigate bounded normal operators in Krein spaces having a real part and an imaginary part with real spectra only. If moreover the imaginary part satisfies some growth condition close to the real axis and if there is a rectangular consisting of either positive or negative type spectrum only, then the normal operator possesses a local spectral function which is defined for Borel subsets of the rectangular, i.e. the operator behaves locally in the same way as a normal operator in a Hilbert space.

This talk is based on a joint work with F. Philipp (Ilmenau, Germany) and V. Strauss (Caracas, Venezuela).

Institut für Mathematik, TU Ilmenau, Postfach 100565, D-98684 Ilmenau, Germany
E-mail address: carsten.trunk@tu-ilmenau.de