Deformations of structures to geometric black hole of a compact manifold

Alexander Ermolitski

Let M^n be a compact, closed, smooth manifold. Then there exists a Riemannian metric g on M^n and a smooth triangulation of M^n . Both the structures make possible to construct a family of piecewise smooth curves on M^n and to prove the following

Theorem 1. The manifold M^n has a decomposition $M^n = C^n \cup K^{n-1}$, $C^n \cap K^{n-1} = \emptyset$, where C^n is a ndimensional cell and K^{n-1} is a connected union of some (n-1) simplexes of the triangulation.

Using the construction above we have obtained **Theorem 2** (Poincare) Let M^3 be a commate closed smooth sime

Theorem 2. (Poincare). Let M^3 be a compact, closed, smooth, simply connected manifold of dimension 3. Then M^3 is diffeomorphic to S^3 , where S^3 is the sphere of dimension 3.

For any point $z \in K^{n-1}$ we can consider the closed geodesic ball $\overline{B}(z, \varepsilon)$ of a small radius $\varepsilon > 0$. Let $Tb(K^{n-1}, \varepsilon) = \bigcup_{z \in K^{n-1}} \overline{B}(z, \varepsilon) = BH(\varepsilon)$.

Definition. We call the set $BH(\varepsilon)$ a geometric black hole of radius $\varepsilon > 0$ of the manifold M^n if $M^n \setminus BH(\varepsilon)$ is a cell (it is true for some small ε).

Let *T* be some structure (tensor field, *G*structure *etc*) on the manifold M^n . Deformations of structures was considered in [1].

Thus, there exists a deformation \overline{T} of T on M^n with the following properties.

- a) *T* is continuous and sectionally smooth.
- b) If a point $x \in M^n \setminus BH(\varepsilon)$ then the construction of \overline{T} at the point x is trivial.
 - A.A. Ermolitski. Deformations of structures, embedding of a Riemannian manifold in a Kaehlerian one and geometric antigravitation. Banach Center Publications, V. 76, p. 505-514, Warszawa 2007.