Euler class and Gysin sequence of the oriented sphere bundle on differential spaces

Ewa Falkiewicz

Let (M, π, B, F) be an oriented, Riemannian (r+1)-vector bundle, where $(M, \mathcal{F}(M))$ is the differential space (in the sense of Sikorski), with a differential structure $\mathcal{F}(M)$, $(B, \mathcal{F}(B))$ is a base differential space, $\pi : M \to B$ is the projection. With such vector bundle we can associate an oriented *r*-sphere bundle (M_S, π_S, B, S) , where $(M_S, \mathcal{F}(M_S))$ is differential subspace of $(M, \mathcal{F}(M))$ with the same differential structure, $\pi_S : M_S \to B$ is the restriction of π , *S* (resp. S_x) denotes the unit sphere of the vector space *F* (resp. F_x) and

$$M_S = \bigcup_{x \in B} S_x.$$

We define integration over the fibre *F* as a linear map $\oint_F : A_F(M) \to A(B)$, homogenous of degree -r-1, where $A_F(M)$ denotes the set of forms with fibre-compact support. We show following properties of the integration over the fibre:

- 1. \oint is surjection;
- 2. $\stackrel{F}{d} \circ \underset{F}{f} = \underset{F}{f} \circ d$, where *d* is differential operator; 3. $\underset{F}{f} \pi^* \Phi \land \Psi = \Phi \land \underset{F}{f} \Psi$, where $\Phi \in A(B), \Psi \in A_F(M), \pi^* : A(B) \to A(M)$.

The aim of this work is to construct the Gysin sequence and the Euler class of the oriented sphere bundle on differential space. We need to this construction a homomorphism between cohomology algebras $\beta : H(B) \to H(\ker f)$, giving by the formula: $\beta([\Phi]) = [\pi^*\Phi]$

for $[\Phi] \in H(B)$. We show in this paper that β is an isomorphism and next we construct the Gysin sequence for the sphere bundle and the Euler class of the oriented sphere bundle on a differential space.