Lie algebroid approach to torsions on certain gauge-like prolongations

Ivan Kolar

The *r*-th principal (or gauge-natural) prolongation W^rP of a principal bundle P(M, G) is the fiber product of the *r*-th order frame bundle P^rM of M and the *r*-th jet prolongation J^rP of *P*. This is a principal bundle over *M* and its Lie algebroid satisfies $L(W^rP) = J^r(LP)$, where *LP* means the Lie algebroid of *P*. The torsion of a principal connection on W^rP can be defined either as the covariant exterior differential of the canonical one-form of W^rP or, equivalently, by using the bracket of $J^r(LP)$. For every fiber product preserving bundle functor *F* on the category of fibered manifolds and their morphisms with local diffeomorphisms as base maps, we constructed similarly a principal bundle W^FP , which can be called a gauge-like prolongation of *P*. In the case $F = J^r$, W^FP coincides with W^rP . An analogous problem concerning torsions of connections on W^FP for some special types of *F* will be discussed in the lecture.