On the structure of factorizable groups of homeomorphisms

Ilona Michalik (joint work with Agnieszka Kowalik and Tomasz Rybicki)

Let G(X) be a group of homeomorphisms on a paracompact second countable space X. G(X) is called *factorizable* if for any open cover \mathcal{U} of X the set $\bigcup_{U \in \mathcal{U}} G_U(X)$ generates G(X),

where $G_U(X) = \{f \in G(X) : \operatorname{supp}(f) \subset U\}.$

A well-known Epstein's theorem states that under some natural conditions (including the transitivity and the factorizability) the commutator subgroup [G(X), G(X)] of G(X) is simple. Next Ling ameliorated the Epstein's theorem by relaxing its assumptions (but the transitivity is still assumed).

In this talk we describe the algebraic properties of the commutator subgroup of a homeomorphism group G(X), which need not satisfy transitivity assumption.

Definition: Let *G* acts effectively on *X*, i.e. *G* is a subset of the symmetric group of *X*. A group *G* is said to be *non-fixing* if $O(x) \neq \{x\}$ for every $x \in X$, where $O(x) = \{g(x) | g \in G\}$ is an orbit of *x*.

A non-fixing group *G* is said to be *quasi-simple* iff there is no nontrivial, non-fixing normal subgroup of *G*.

Let us introduce the following condition of *strong factorizability* for a group G = G(X) of homeomorphisms of *X*.

(SF) For any $g \in G$ and for any \mathcal{V} a covering of X there exist an integer n, elements $g_1, \ldots, g_n \in G$ and $V_1, \ldots, V_n \in \mathcal{V}$ such that $g = g_n \ldots g_1$ and $\operatorname{supp}(g_i) \subseteq V_i$. Moreover for any $x \in X$ there is U an open neighbourhood of x such that if $\operatorname{supp}(g) \subseteq U$ then we may have $\operatorname{supp}(g_i) \subseteq U$ for $1 \le i \le n$.

Our main result could be formulated as follows.

Theorem: Let *X* be a paracompact space and let G = G(X) satisfy the strong factorizability condition (SF). If *H* is a non-fixing subgroup of *G* such that $[G, G] \subseteq \mathcal{N}_G(H)$ then $[G, G] \subseteq H$.

Several examples illustrating the theorem are presented. For instance, the compactly supported identity component of the group of all leaf-preserving diffeomorphisms of a regular foliation is quasi-simple. The same is true for the diffeomorphism group of a manifold with boundary.

References

[1] D.B.A. Epstein: *The simplicity of certain groups of homeomorphisms*, Compositio Mathematica 22, Fasc.2 (1970), 165-173

[2] W.Ling, *Factorizable groups of homeomorphisms*, Compositio Mathematica, 51 no. 1 (1984), 41-50