A symmetry of maps implies its chaos, i.e. gives ∞ many periodic points

Wacław Marzantowicz & Jerzy Jezierski
U A M & SGGW

January 7, 2011
1. Abstract

2. Problems

3. Smoothness

4. Results for the sphere maps

5. Equivariant maps

6. Nielsen Theory

7. Per. pts of self-map of the orbit space

8. Main theorems

9. Bibliography
\[f : X \rightarrow X, \] here \(X \) is a closed manifold of dim \(d \).

Notation:

\[P^n(f) := \text{Fix}(f^n) \] the set of points of period \(n \),

\[P_n(f) := P^n(f) \setminus \bigcup_{k|n<n} P^k(f) \] the set of points for which \(n \) is the **minimal period**, called shortly \(n \)-**periodic** points.

\[P(f) := \bigcup_{1}^{\infty} P^n(f) = \bigcup_{1}^{\infty} P_n(f) \] the set of all **periodic points**.

\[\text{Per}(f) := \{ n \in \mathbb{N} : P_n(f) \neq \emptyset \} \] the set of **minimal periods** of \(f \).
$f : X \to X$, here X is a closed manifold of dim d.

Notation:

\[P^n(f) := \text{Fix}(f^n) \]
the set of points of period n,

\[P_n(f) := P^n(f) \setminus \bigcup_{k \mid n < n} P^k(f) \]
the set of points for which n is the **minimal period**, called shortly **n-periodic** points.

\[P(f) := \bigcup_{1}^{\infty} P^n(f) = \bigcup_{1}^{\infty} P_n(f) \]
the set of **all periodic points**.

\[\text{Per}(f) := \{ n \in \mathbb{N} : P_n(f) \neq \emptyset \} \]
the set of **minimal periods** of f.
Problems of dynamical systems:

1. Describe $\text{Per}(f)$, in particular when $\#\text{Per}(f) = \infty$, or $\text{Per}(f) = \mathbb{N}$.

2. Give an estimate from below of $\#P^n(f)$, $\#P_n(f)$.

3. Give an estimate from above of $\#P^n(f)$, $\#P_n(f)$.

4. Give an estimate from below of $\limsup \#P^n(f)$.

5. Give an estimate from above of $\limsup \#P^n(f)$.

Problems of dynamical systems:

1°. Describe $\text{Per}(f)$, in particular when $\#\text{Per}(f) = \infty$, or $\text{Per}(f) = \mathbb{N}$.

2° Give an estimate from below of $\#P^n(f)$, $\#P_n(f)$,

3° Give an estimate from above of $\#P^n(f)$, $\#P_n(f)$,

4° Give an estimate from below of $\limsup \#P^n(f)$,

5° Give an estimate from above of $\limsup \#P^n(f)$.
Problems of dynamical systems:

1°. Describe $\text{Per}(f)$, in particular when $\#\text{Per}(f) = \infty$, or $\text{Per}(f) = \mathbb{N}$.

2° Give an estimate from below of $\#P^n(f)$, $\#P_n(f)$,

3° Give an estimate from above of $\#P^n(f)$, $\#P_n(f)$,

4° Give an estimate from below of $\limsup \#P^n(f)$,

5° Give an estimate from above of $\limsup \#P^n(f)$.
Problems of dynamical systems:

1. Describe $\text{Per}(f)$, in particular when $\#\text{Per}(f) = \infty$, or $\text{Per}(f) = \mathbb{N}$.

2. Give an estimate from below of $\#P_n(f)$, $\#P^*_n(f)$,

3. Give an estimate from above of $\#P_n(f)$, $\#P^*_n(f)$,

4. Give an estimate from below of $\limsup \#P_n(f)$,

5. Give an estimate from above of $\limsup \#P^*_n(f)$.
Problems of dynamical systems:

1. **Describe** $\text{Per}(f)$, **in particular when** $\#\text{Per}(f) = \infty$, or $\text{Per}(f) = \mathbb{N}$.

2. **Give an estimate from below of** $\#P^n(f)$, $\#P_n(f)$,

3. **Give an estimate from above of** $\#P^n(f)$, $\#P_n(f)$,

4. **Give an estimate from below of** $\limsup \#P^n(f)$,

5. **Give an estimate from above of** $\limsup \#P^n(f)$.
Theorem (Shub & Sullivan 1974)

\[f : X \rightarrow X \text{ such that } \{L(f^n)\}_{1}^{\infty} \text{ is unbounded} \]

If \(f \in C^1 \) then \(\#P(f) = \infty \)

Lefschetz-Hopf formula

\[L(f^n) = \text{Ind}(f^n, X) = \sum_{x \in \text{Fix}(f^n)} \text{Ind}(f^n, x) \]

Main step: \(f \in C^1, f(0) = 0 \implies \{\text{Ind}(f^n, 0)\} \text{ is bounded} \)

provided it is defined.

Chow & Mallet-Paret & Yorke (81): the sequence is periodic of a period \(k \) defined by \(\sigma(Df(0)) \).
Theorem (Shub & Sullivan 1974)

\[f : X \rightarrow X \text{ such that } \{L(f^n)\}_1^\infty \text{ is unbounded} \]

If \(f \in C^1 \) then \(\#P(f) = \infty \)

Lefschetz-Hopf formula

\[L(f^n) = \text{Ind}(f^n, X) = \sum_{x \in \text{Fix}(f^n)} \text{Ind}(f^n, x) \]

Main step: \(f \in C^1, f(0) = 0 \implies \{\text{Ind}(f^n, 0)\} \) is bounded provided it is defined.

Chow & Mallet-Paret & Yorke (81): the sequence is periodic of a period \(k \) defined by \(\sigma(Df(0)) \).
Theorem (Shub & Sullivan 1974)

\[f : X \rightarrow X \quad \text{such that} \quad \{ L(f^n) \}_{1}^{\infty} \quad \text{is unbounded} \]

If \(f \in C^1 \) then \(\#P(f) = \infty \)

Lefschetz-Hopf formula

\[L(f^n) = \text{Ind}(f^n, X) = \sum_{x \in \text{Fix}(f^n)} \text{Ind}(f^n, x) \]

Main step: \(f \in C^1, f(0) = 0 \implies \{ \text{Ind}(f^n, 0) \} \) is bounded provided it is defined.

Chow & Mallet-Paret & Yorke (81): the sequence is periodic of a period \(k \) defined by \(\sigma(Df(0)) \).
Theorem (Shub & Sullivan 1974)

\[f : X \to X \text{ such that } \{L(f^n)\}_{1}^{\infty} \text{ is unbounded} \]

\[\text{If } f \in C^1 \text{ then } \#P(f) = \infty \]

Lefschetz-Hopf formula

\[L(f^n) = \text{Ind}(f^n, X) = \sum_{x \in \text{Fix}(f^n)} \text{Ind}(f^n, x) \]

Main step: \(f \in C^1, f(0) = 0 \implies \{\text{Ind}(f^n, 0)\} \) is bounded provided it is defined.

Chow & Mallet-Paret & Yorke (81): the sequence is periodic of a period \(k \) defined by \(\sigma(Df(0)) \).
Conjecture (Shub 1974)

\[
\limsup_n \sqrt{\# P^n(f)} \geq \limsup_n \sqrt{|L(f^n)|} = \rho_{es} > 1 \text{ if } \{L(f^n)\} \text{ is unb.}
\]

The rate of growth is at least exponential.

Theorem (Babenko & Bogatyi 1991)

Let \(f : X \rightarrow X, \ d = \dim X, \) and \(f \in C^1. \) Assume: \(\{L(f^n)\}_{1}^{\infty} \) is unb. Then there exists \(n_0 = n_0(f) \) such that \(\forall \ n \geq n_0 \)

\[
\# \text{Or}(f, n) \geq \frac{n - n_0}{D^{2[d+1/2]}},
\]

where \(D := \dim H^*(X; \mathbb{R}) \)

In particular, since \(\# P^n(f) \geq \# \text{Or}(f, n) \) we have at least linear rate of growth of \(\# P^n(f) \) which does not follow from the Shub conjecture.
Conjecture (Shub 1974)

\[
\limsup \sqrt{\#P^n(f)} \geq \limsup \sqrt{|L(f^n)|} = \rho_{es} > 1 \text{ if } \{L(f^n)\} \text{ is unb.}
\]

The rate of growth is at least exponential.

Theorem (Babenko & Bogatyi 1991)

\[f : X \to X, \ d = \dim X, \text{ and } f \in C^1. \text{ Assume: } \{L(f^n)\}_{1}^{\infty} \text{ is unb.} \]

Then \(\exists n_0 = n_0(f) \text{ such that } \forall n \geq n_0 \)

\[\#\text{Or}(f, n) \geq \frac{n - n_0}{D 2^{[d+1/2]}} ,\]

where \(D := \dim H^*(X; \mathbb{R}) \)

In particular, since \(\#P^n(f) \geq \#\text{Or}(f, n) \) we have at least linear rate of growth of \(\#P^n(f) \)

which does not follow from the Shub conjecture.
Theorem ([JJWM1])

Let $g : S^d \to S^d$, $d \geq 1$, be a free homeomorphism of finite order $m > 1$, and $f : S^d \to S^d$ be a map that commutes with g. Suppose that $\deg(f) \notin \{-1, 0, 1\}$. Then for $\forall \ k \in \mathbb{N}$ we have

$$\#\text{Fix}(f^{km}) \geq m^2 k'$$

k' is as in Definition [19]. In particular, for $k = m^s$ we have

$$\#\text{Fix}(f^{m^{s+1}}) \geq m^{s+2}.$$

For S^d, $d \geq 1$, $\{L(f^k)\}_{1}^{\infty}$ is unbounded iff $\deg(f) \neq 0, \pm 1$.

Corollary ([JJWM1])

Let $f : S^d \to S^d$ be a continuous map with $\{L(f^n)\}_{1}^{\infty}$ unbounded. If f commutes with a free homeomorphism $g : S^d \to S^d$ of order $m > 1$, then the set $\text{Per}(f)$ of minimal periods of f and consequently the set $P(f)$ of periodic points are infinite.
Theorem ([JJWM1])

Let \(g : S^d \rightarrow S^d, \ d \geq 1, \) be a free homeomorphism of finite order \(m > 1, \) and \(f : S^d \rightarrow S^d \) be a map that commutes with \(g. \)

Suppose that \(\text{deg}(f) \notin \{-1, 0, 1\}. \) Then for \(\forall \ k \in \mathbb{N} \) we have

\[
\#\text{Fix}(f^{km}) \geq m^2 k'
\]

\(k' \) is as in Definition [19]. In particular, for \(k = m^s \) we have

\[
\#\text{Fix}(f^{m^{s+1}}) \geq m^{s+2}.
\]

For \(S^d, \ d \geq 1, \) \(\{L(f^k)\}_{1}^{\infty} \) is unbounded iff \(\text{deg}(f) \neq 0, \pm 1. \)

Corollary ([JJWM1])

Let \(f : S^d \rightarrow S^d \) be a continuous map with \(\{L(f^n)\}_{1}^{\infty} \) unbounded. If \(f \) commutes with a free homeomorphism \(g : S^d \rightarrow S^d \) of order \(m > 1, \) then the set \(\text{Per}(f) \) of minimal periods of \(f \) and consequently the set \(P(f) \) of periodic points are infinite.
Theorem ([JJWM1])

Let $g : S^d \to S^d$, $d \geq 1$, be a free homeomorphism of finite order $m > 1$, and $f : S^d \to S^d$ be a map that commutes with g. Suppose that $\deg(f) \notin \{-1, 0, 1\}$. Then for $\forall k \in \mathbb{N}$ we have

$$\# \text{Fix}(f^{km}) \geq m^2 k'$$

k' is as in Definition [19]. In particular, for $k = m^s$ we have

$$\# \text{Fix}(f^{m^s+1}) \geq m^{s+2}.$$

For S^d, $d \geq 1$, $\{L(f^k)\}_{1}^{\infty}$ is unbounded iff $\deg(f) \neq 0, \pm 1$.

Corollary ([JJWM1])

Let $f : S^d \to S^d$ be a continuous map with $\{L(f^n)\}_{1}^{\infty}$ unbounded. If f commutes with a free homeomorphism $g : S^d \to S^d$ of order $m > 1$, then the set $\text{Per}(f)$ of minimal periods of f and consequently the set $P(f)$ of periodic points are infinite.
Theorem ([JJWM1])

Let $g : S^d \to S^d$, $d \geq 1$, be a free homeomorphism of finite order $m > 1$, and $f : S^d \to S^d$ be a map that commutes with g. Suppose that $\text{deg}(f) \not\in \{-1, 0, 1\}$. Then for $\forall \ k \in \mathbb{N}$ we have

$$\# \text{Fix}(f^{km}) \geq m^2 k'$$

k' is as in Definition [19]. In particular, for $k = m^s$ we have

$$\# \text{Fix}(f^{ms+1}) \geq m^{s+2}.$$

For S^d, $d \geq 1$, $\{L(f^k)\}_{1}^{\infty}$ is unbounded iff $\text{deg}(f) \neq 0, \pm 1$.

Corollary ([JJWM1])

Let $f : S^d \to S^d$ be a continuous map with $\{L(f^n)\}_{1}^{\infty}$ unbounded. If f commutes with a free homeomorphism $g : S^d \to S^d$ of order $m > 1$, then the set $\text{Per}(f)$ of minimal periods of f and consequently the set $\text{P}(f)$ of periodic points are infinite.
Theorem ([JJWM1])

Let \(g : S^d \to S^d, \ d \geq 1, \) be a free homeomorphism of finite order \(m > 1, \) and \(f : S^d \to S^d \) be a map that commutes with \(g. \) Supposing that \(\deg(f) \not\in \{-1, 0, 1\}. \) Then for \(\forall \ k \in \mathbb{N} \) we have

\[
\#\text{Fix}(f^{km}) \geq m^2 k'
\]

\(k' \) is as in Definition [19]. In particular, for \(k = m^s \) we have

\[
\#\text{Fix}(f^{ms+1}) \geq m^{s+2}.
\]

For \(S^d, \ d \geq 1, \) \(\{L(f^k)\}_1^\infty \) is unbounded iff \(\deg(f) \neq 0, \pm 1. \)

Corollary ([JJWM1])

Let \(f : S^d \to S^d \) be a continuous map with \(\{L(f^n)\}_1^\infty \) unbounded. If \(f \) commutes with a free homeomorphism \(g : S^d \to S^d \) of order \(m > 1, \) then the set \(\text{Per}(f) \) of minimal periods of \(f \) and consequently the set \(P(f) \) of periodic points are infinite.
Eventually generalize for G-equivariant maps?
for G not cyclic, or infinite compact

1. Few class of groups: There exists a classification of finite
groups which can act free (act smoothly) on the spheres!!,
e.g. they do not contain $\mathbb{Z}_p \oplus \mathbb{Z}_p$.

2. The only infinite groups acting free on S^d:
$G = S^1$, $N(S^1) \subset S^3$, S^3.

3. If $f : M \rightarrow M$ is G-equivariant, M any compact manifold, G
infinite compact, then $L(f) = 0$, consequently $L(f^k) = 0$ for
$\forall \ k$.

4. For the problem of existence of infinitely many periodic points,
one can always restrict the action to a cyclic subgroup of G.

Remark

Note that in the simplest case $G = \mathbb{Z}_2$, or $G = \mathbb{Z}_m$ the orbit
space S^d/G is the real projective space, or a lens space.
Eventually generalize for G-equivariant maps? for G not cyclic, or infinite compact

1. Few class of groups: There exists a classification of finite groups which can act free (act smoothly) on the spheres!! , e.g. they do not contain $\mathbb{Z}_p \oplus \mathbb{Z}_p$.

2. The only infinite groups acting free on S^d : $G = S^1$, $N(S^1) \subset S^3$, S^3.

3. If $f : M \to M$ is G-equivariant, M any compact manifold, G infinite compact, then $L(f) = 0$, consequently $L(f^k) = 0$ for $\forall \ k$.

4. For the problem of existence of infinitely many periodic points, one can always restrict the action to a cyclic subgroup of G.

Remark

Note that in the the simplest case $G = \mathbb{Z}_2$, or $G = \mathbb{Z}_m$ the orbit space S^d/G is the real projective space, or a lens space.
Eventually generalize for G-equivariant maps?
for G not cyclic, or infinite compact

1. Few class of groups: There exists a classification of finite groups which can act free (act smoothly) on the spheres!!, e.g. they do not contain $\mathbb{Z}_p \oplus \mathbb{Z}_p$.

2. The only infinite groups acting free on S^d:
 $G = S^1$, $N(S^1) \subset S^3$, S^3.

3. If $f : M \to M$ is G-equivariant, M any compact manifold, G infinite compact, then $L(f) = 0$, consequently $L(f^k) = 0$ for $\forall \ k$.

4. For the problem of existence of infinitely many periodic points, one can always restrict the action to a cyclic subgroup of G.

Remark
Note that in the the simplest case $G = \mathbb{Z}_2$, or $G = \mathbb{Z}_m$ the orbit space S^d/G is the real projective space, or a lens space.
Eventually generalize for G-equivariant maps? for G not cyclic, or infinite compact

1. Few class of groups: There exists a classification of finite groups which can act free (act smoothly) on the spheres!! e.g. they do not contain $\mathbb{Z}_p \oplus \mathbb{Z}_p$.

2. The only infinite groups acting free on S^d:
 $G = S^1$, $N(S^1) \subset S^3$, S^3.

3. If $f : M \to M$ is G-equivariant, M any compact manifold, G infinite compact, then $L(f) = 0$, consequently $L(f^k) = 0$ for $\forall \ k$.

4. For the problem of existence of infinitely many periodic points, one can always restrict the action to a cyclic subgroup of G.

Remark

Note that in the simplest case $G = \mathbb{Z}_2$, or $G = \mathbb{Z}_m$ the orbit space S^d/G is the real projective space, or a lens space.
Eventually generalize for G-equivariant maps?
for G not cyclic, or infinite compact

1. Few class of groups: There exists a classification of finite groups which can act free (act smoothly) on the spheres!!, e.g. they do not contain $\mathbb{Z}_p \oplus \mathbb{Z}_p$.

2. The only infinite groups acting free on S^d:
$G = S^1$, $N(S^1) \subset S^3, S^3$.

3. If $f: M \to M$ is G-equivariant, M any compact manifold, G infinite compact, then $L(f) = 0$, consequently $L(f^k) = 0$ for $\forall k$.

4. For the problem of existence of infinitely many periodic points, one can always restrict the action to a cyclic subgroup of G.

Remark
Note that in the simplest case $G = \mathbb{Z}_2$, or $G = \mathbb{Z}_m$ the orbit space S^d/G is the real projective space, or a lens space.
The idea of proof

- The general idea of the proofs of the stated Theorems is to study a map $\bar{f} : M \to M$ of the quotient space $M := S^d / \mathbb{Z}_m$ induced by the \mathbb{Z}_m-equivariant map $f : S^d \to S^d$ in the problem.

- Next we estimate the number of periodic points of \bar{f}, and we ”lift” them to periodic points of f.

- To study periodic points of the induced map \bar{f} we use the Nielsen theory adapted to this situation.

- It is worth pointing out that a direct application of the Nielsen number of iterations is inefficient since

$$N(\bar{f}^n) \leq \#\pi_1(M) = \text{is finite for many } M$$
The idea of proof

- The general idea of the proofs of the stated Theorems is to study a map $\bar{f} : M \to M$ of the quotient space $M := S^d / \mathbb{Z}_m$ induced by the \mathbb{Z}_m-equivariant map $f : S^d \to S^d$ in the problem.

- Next we estimate the number of periodic points of \bar{f}, and we "lift" them to periodic points of f.

- To study periodic points of the induced map \bar{f} we use the Nielsen theory adapted to this situation.

- It is worth pointing out that a direct application of the Nielsen number of iterations is inefficient since

\[N(\bar{f}^n) \leq \# \pi_1(M) = \text{is finite for many } M \]
The idea of proof

- The general idea of the proofs of the stated Theorems is to study a map $\bar{f} : M \to M$ of the quotient space $M := S^d / \mathbb{Z}_m$ induced by the \mathbb{Z}_m-equivariant map $f : S^d \to S^d$ in the problem.

- Next we estimate the number of periodic points of \bar{f}, and we ”lift” them to periodic points of f.

- To study periodic points of the induced map \bar{f} we use the Nielsen theory adapted to this situation.

- It is worth pointing out that a direct application of the Nielsen number of iterations is inefficient since

$$N(\bar{f}^n) \leq \#\pi_1(M) = \text{is finite for many } M$$
The idea of proof

- The general idea of the proofs of the stated Theorems is to study a map \(\bar{f} : M \to M \) of the quotient space \(M := S^d / \mathbb{Z}_m \) induced by the \(\mathbb{Z}_m \)-equivariant map \(f : S^d \to S^d \) in the problem.

- Next we estimate the number of periodic points of \(\bar{f} \), and we "lift" them to periodic points of \(f \).

- To study periodic points of the induced map \(\bar{f} \) we use the Nielsen theory adapted to this situation.

- It is worth pointing out that a direct application of the Nielsen number of iterations is inefficient since

\[
N(\bar{f}^n) \leq \#\pi_1(M) = \text{is finite for many } M
\]
Below we include some facts about equivariant maps

Proposition (Borsuk-Ulam)

Suppose that \mathbb{Z}_m acts freely on S^d, $d \geq 1$. If $f : S^d \to S^d$ is an equivariant map, then $\deg(f) \equiv 1 \mod m$.

For $m = 2$, this is the classical Borsuk-Ulam theorem which states that an odd map has odd degree.

$f, h : S^d \to S^d$ are homotopic \iff $\deg f = \deg h$.

Theorem (C, Bowszyc, R. Rubinsztein, [Rub].)

Suppose that a finite group G acts freely on S^d, $d > 1$. Then the natural map $[S^d, S^d]_G \to [S^d, S^d]$ is an injection, i.e. if two equivariant mappings have the same degree, then they are equivariantly homotopic.

Moreover the image of $[S^d, S^d]_G$ in $[S^d, S^d] = \mathbb{Z}$ is equal to $\{m\mathbb{Z} + 1\}$.
Below we include some facts about equivariant maps

Proposition (Borsuk-Ulam)

Suppose that \mathbb{Z}_m acts freely on S^d, $d \geq 1$. If $f : S^d \to S^d$ is an equivariant map, then $\deg(f) \equiv 1 \mod m$.

For $m = 2$, this is the classical Borsuk-Ulam theorem which states that an odd map has odd degree.

$f, h : S^d \to S^d$ are homotopic \iff $\deg f = \deg h$.

Theorem (C, Bowszyc, R. Rubinsztein, [Rub].)

Suppose that a finite group G acts freely on S^d, $d > 1$. Then the natural map $[S^d, S^d]_G \to [S^d, S^d]$ is an injection, i.e. if two equivariant mappings have the same degree, then they are equivariantly homotopic.

Moreover the image of $[S^d, S^d]_G$ in $[S^d, S^d] = \mathbb{Z}$ is equal to $\{m\mathbb{Z} + 1\}$.
Below we include some facts about equivariant maps

Proposition (Borsuk-Ulam)

Suppose that \mathbb{Z}_m acts freely on S^d, $d \geq 1$. If $f : S^d \rightarrow S^d$ is an equivariant map, then $\text{deg}(f) \equiv 1 \mod m$.

For $m = 2$, this is the classical Borsuk-Ulam theorem which states that an odd map has odd degree.

$f, h : S^d \rightarrow S^d$ are homotopic \iff $\text{deg} f = \text{deg} h$.

Theorem (C, Bowszyc, R. Rubinsztein, [Rub].)

Suppose that a finite group G acts freely on S^d, $d > 1$. Then the natural map $[S^d, S^d]_G \rightarrow [S^d, S^d]$ is an injection, i.e. if two equivariant mappings have the same degree, then they are equivariantly homotopic.

Moreover the image of $[S^d, S^d]_G$ in $[S^d, S^d] = \mathbb{Z}$ is equal to $\{m\mathbb{Z} + 1\}$.
Below we include some facts about equivariant maps

Proposition (Borsuk-Ulam)

*Suppose that \mathbb{Z}_m acts freely on S^d, $d \geq 1$. If $f : S^d \to S^d$ is an equivariant map, then $\deg(f) \equiv 1 \mod m$.

For $m = 2$, this is the classical Borsuk-Ulam theorem which states that an odd map has odd degree.

$f, h : S^d \to S^d$ are homotopic $\iff \deg f = \deg h$.

Theorem (C, Bowszyc, R. Rubinsztein, [Rub].)

Suppose that a finite group G acts freely on S^d, $d > 1$. Then the natural map $[S^d, S^d]_G \to [S^d, S^d]$ is an injection, i.e. if two equivariant mappings have the same degree, then they are equivariantly homotopic. Moreover the image of $[S^d, S^d]_G$ in $[S^d, S^d] = \mathbb{Z}$ is equal to $\{m\mathbb{Z} + 1\}$.
Below we include some facts about equivariant maps

Proposition (Borsuk-Ulam)

Suppose that \mathbb{Z}_m acts freely on S^d, $d \geq 1$. If $f : S^d \to S^d$ is an equivariant map, then $\text{deg}(f) \equiv 1 \mod m$.

For $m = 2$, this is the classical Borsuk-Ulam theorem which states that an odd map has odd degree.

$f, h : S^d \to S^d$ are homotopic $\iff \text{deg } f = \text{deg } h$.

Theorem (C, Bowszyc, R. Rubinsztein, [Rub].)

Suppose that a finite group G acts freely on S^d, $d > 1$. Then the natural map $[S^d, S^d]^G \to [S^d, S^d]$ is an injection, i.e. if two equivariant mappings have the same degree, then they are equivariantly homotopic. Moreover the image of $[S^d, S^d]^G$ in $[S^d, S^d] = \mathbb{Z}$ is equal to $\{m\mathbb{Z} + 1\}$.
Comments

Note that taking the suspension of the map $f : S^1 \rightarrow S^1$, $f(z) = z^r$, $|r| \geq 2$ (with ∞ many periodic points) we get a map Σf of S^2 with the same dynamics as z^r.

On the other hand, the Shub example gives a map of S^2 which is a small perturbation of Σf but has only two non-wandering points.

(Note that the Shub example is not \mathbb{Z}_2-equivariant)

The stated Theorems say that any small equivariant perturbation, or more generally any equivariant continuous deformation of f must possess infinitely many periodic points.
Comments

Note that taking the suspension of the map \(f : S^1 \to S^1 \),
\(f(z) = z^r, |r| \geq 2 \) (with \(\infty \) many periodic points) we get a map
\(\Sigma f \) of \(S^2 \) with the same dynamics as \(z^r \).

On the other hand, the Shub example gives a map of \(S^2 \) which is a
small perturbation of \(\Sigma f \) but has only two non-wandering points.

(Note that the Shub example is not \(\mathbb{Z}_2 \)-equivariant)

The stated Theorems say that any small equivariant perturbation,
or more generally any equivariant continuous deformation of \(f \)
must possess infinitely many periodic points.
Comments

Note that taking the suspension of the map $f : S^1 \to S^1$, $f(z) = z^r$, $|r| \geq 2$ (with ∞ many periodic points) we get a map Σf of S^2 with the same dynamics as z^r.

On the other hand, the Shub example gives a map of S^2 which is a small perturbation of Σf but has only two non-wandering points.

(Note that the Shub example is not \mathbb{Z}_2-equivariant)

The stated Theorems say that any small equivariant perturbation, or more generally any equivariant continuous deformation of f must possess infinitely many periodic points.
Comments

Note that taking the suspension of the map \(f : S^1 \to S^1 \), \(f(z) = z^r, \ |r| \geq 2 \) (with \(\infty \) many periodic points) we get a map \(\Sigma f \) of \(S^2 \) with the same dynamics as \(z^r \).

On the other hand, the Shub example gives a map of \(S^2 \) which is a small perturbation of \(\Sigma f \) but has only two non-wandering points.

(Note that the Shub example is not \(\mathbb{Z}_2 \)-equivariant)

The stated Theorems say that any small equivariant perturbation, or more generally any equivariant continuous deformation of \(f \) must possess infinitely many periodic points.
In this section we denote by $p : \tilde{X} \rightarrow X$ a universal covering of X. For a G-space X with a free action of a finite group G and a map $X \rightarrow \tilde{X} = X/G$ onto the orbit space we will denote the covering $p : X \rightarrow \tilde{X}$, opposite to the notation used here.

Let $p : \tilde{X} \rightarrow X$ be a universal covering of a polyhedron.

$$O_X := \{ \alpha : \tilde{X} \rightarrow \tilde{X} : p\alpha = p \}$$

is the group of *deck transformations* of this covering.

Let $f : X \rightarrow X$ be a map and let $\text{lift}(f) = \{ \tilde{f} : \tilde{X} \rightarrow \tilde{X} : p\tilde{f} = fp \}$ denote the set of all lifts of f.

If we fix a lift \tilde{f}_0, then each other lift of f can be uniquely written as $\alpha\tilde{f}_0$, $\alpha \in O_X$.
In this section we denote by $p : \tilde{X} \to X$ a universal covering of X. For a G-space X with a free action of a finite group G and a map $X \to \bar{X} = X/G$ onto the orbit space we will denote the covering $p : X \to \bar{X}$, opposite to the notation used here.

Let $p : \tilde{X} \to X$ be a universal covering of a polyhedron.

$$O_X := \{\alpha : \tilde{X} \to \tilde{X} : p\alpha = p\}$$

is the group of deck transformations of this covering.

Let $f : X \to X$ be a map and let $\text{lift}(f) = \{\tilde{f} : \tilde{X} \to \tilde{X} : p\tilde{f} = fp\}$ denote the set of all lifts of f.

If we fix a lift \tilde{f}_0, then each other lift of f can be uniquely written as $\alpha \tilde{f}_0$, $\alpha \in O_X$.
In this section we denote by $p : \tilde{X} \rightarrow X$ a universal covering of X. For a G-space X with a free action of a finite group G and a map $X \rightarrow \bar{X} = X/G$ onto the orbit space we will denote the covering $p : X \rightarrow \bar{X}$, opposite to the notation used here.

Let $p : \tilde{X} \rightarrow X$ be a universal covering of a polyhedron.

$$O_X := \{ \alpha : \tilde{X} \rightarrow \tilde{X} : p\alpha = p \}$$

is the group of *deck transformations* of this covering.

Let $f : X \rightarrow X$ be a map and let lift$(f) = \{ \tilde{f} : \tilde{X} \rightarrow \tilde{X} : p\tilde{f} = fp \}$ denote the set of all lifts of f.

If we fix a lift \tilde{f}_0, then each other lift of f can be uniquely written as $\alpha \tilde{f}_0$, $\alpha \in O_X$.
In this section we denote by $p : \tilde{X} \to X$ a universal covering of X. For a G-space X with a free action of a finite group G and a map $X \to \bar{X} = X/G$ onto the orbit space we will denote the covering $p : X \to \bar{X}$, opposite to the notation used here.

Let $p : \tilde{X} \to X$ be a universal covering of a polyhedron.

$$\mathcal{O}_X := \{ \alpha : \tilde{X} \to \tilde{X} : p\alpha = p \}$$

is the group of *deck transformations* of this covering.

Let $f : X \to X$ be a map and let $\text{lift}(f) = \{ \tilde{f} : \tilde{X} \to \tilde{X} : p\tilde{f} = fp \}$ denote the set of all lifts of f.

If we fix a lift \tilde{f}_0, then each other lift of f can be uniquely written as $\alpha \tilde{f}_0$, $\alpha \in \mathcal{O}_X$.
In this section we denote by $p : \tilde{X} \to X$ a universal covering of X. For a G-space X with a free action of a finite group G and a map $X \to \bar{X} = X/G$ onto the orbit space we will denote the covering $p : X \to \bar{X}$, opposite to the notation used here.

Let $p : \tilde{X} \to X$ be a universal covering of a polyhedron.

$$\mathcal{O}_X := \{ \alpha : \tilde{X} \to \tilde{X} : p\alpha = p \}$$

is the group of \textit{deck transformations} of this covering.

Let $f : X \to X$ be a map and let $\text{lift}(f) = \{ \tilde{f} : \tilde{X} \to \tilde{X} : p\tilde{f} = fp \}$ denote \textit{the set of all lifts} of f.

If we fix a lift \tilde{f}_0, then each other lift of f can be uniquely written as $\alpha \tilde{f}_0$, $\alpha \in \mathcal{O}_X$.
In [Jia1] Boju Jiang introduced a number $NF_k(f)$ which is a homotopy invariant and is the lower bound for $\#\text{Fix}(f^k)$.

Theorem

For any self-map $f : X \to X$ of a finite polyhedron and a fixed natural number $k \in \mathbb{N}$

$$\#\text{Fix}(f^k) \geq \sum_{r|k} (\#\text{IEOR}(f^r)) \cdot r$$

where $\text{IEOR}(f^r)$ denotes the set of irreducible (\mathcal{I}) essential (\mathcal{E}) orbits (\mathcal{O}) of Reidemeister (\mathcal{R}) classes of the map f^r.
In [Jia1] Boju Jiang introduced a number $NF_k(f)$ which is a homotopy invariant and is the lower bound for $\#\text{Fix}(f^k)$.

Theorem

For any self-map $f : X \to X$ of a finite polyhedron and a fixed natural number $k \in \mathbb{N}$

$$\#\text{Fix}(f^k) \geq \sum_{r | k} (#\mathcal{I}\mathcal{E}\mathcal{O}\mathcal{R}(f^r)) \cdot r$$

where $\mathcal{I}\mathcal{E}\mathcal{O}\mathcal{R}(f^r)$ denotes the set of irreducible (I) essential (E) orbits (O) of Reidemeister (R) classes of the map f^r.
Lemma

Consider the commutative diagram

\[\tilde{Y} \xrightarrow{\tilde{f}} \tilde{Y} \]
\[\downarrow p \quad \downarrow p \]
\[Y \xrightarrow{f} Y \]

where \(p : \tilde{Y} \rightarrow Y \) is a finite regular covering of a fin. polyh. \(Y \).

Then

\[\text{ind}(\tilde{f}) = r \cdot \text{ind}(f; p(\text{Fix}(\tilde{f}))) \]

where \(r = \#\{ \alpha \in \mathcal{O}_Y; \tilde{f}\alpha = \alpha\tilde{f} \} \). In particular
\[\text{ind}(f; p(\text{Fix}(\tilde{f}))) \neq 0 \text{ if and only if } L(\tilde{f}) = \text{ind}(\tilde{f}) \neq 0. \]

\(\mathcal{O}_Y \) denotes the group of covering transformations of the regular covering \(p \); exceptionally in this Lemma we do not need to assume that the covering \(p \) is universal.

THIS LEMMA HOLDS "ALWAYS" (i.e. for every \(\tilde{Y} \) as above).
Lemma

Consider the commutative diagram

\[
\begin{array}{ccc}
\tilde{Y} & \xrightarrow{\tilde{f}} & \tilde{Y} \\
p & \downarrow & \downarrow p \\
Y & \xrightarrow{f} & Y
\end{array}
\]

where \(p : \tilde{Y} \rightarrow Y \) is a finite regular covering of a fin. polyh. \(Y \). Then

\[
\text{ind}(\tilde{f}) = r \cdot \text{ind}(f; p(\text{Fix}(\tilde{f})))
\]

where \(r = \#\{\alpha \in \mathcal{O}_Y; \tilde{f}\alpha = \alpha \tilde{f}\} \). In particular \(\text{ind}(f; p(\text{Fix}(\tilde{f}))) \neq 0 \) if and only if \(L(\tilde{f}) = \text{ind}(\tilde{f}) \neq 0 \).

\(\mathcal{O}_Y \) denotes the group of covering transformations of the regular covering \(p \); exceptionally in this Lemma we do not need to assume that the covering \(p \) is universal.

THIS LEMMA HOLDS "ALWAYS" (i.e. for every \(\tilde{Y} \) as above).
Lemma

Consider the commutative diagram

\[
\begin{array}{ccc}
\tilde{Y} & \xrightarrow{\tilde{f}} & \tilde{Y} \\
p \downarrow & & \downarrow p \\
Y & \xrightarrow{f} & Y
\end{array}
\]

where \(p : \tilde{Y} \to Y \) is a finite regular covering of a fin. polyh. \(Y \).

Then

\[
\text{ind} (\tilde{f}) = r \cdot \text{ind} (f; p(\text{Fix}(\tilde{f})))
\]

where \(r = \# \{ \alpha \in \mathcal{O}_Y ; \tilde{f} \alpha = \alpha \tilde{f} \} \).

In particular

\[
\text{ind} (f; p(\text{Fix}(\tilde{f}))) \neq 0 \text{ if and only if } L(\tilde{f}) = \text{ind} (\tilde{f}) \neq 0.
\]

\(\mathcal{O}_Y \) denotes the group of covering transformations of the regular covering \(p \); exceptionally in this Lemma we do not need to assume that the covering \(p \) is universal.

THIS LEMMA HOLDS ”ALWAYS” (i.e. for every \(\tilde{Y} \) as above).
Corollary

Let $\tilde{f} : M \to M$ be the map induced by an equivariant map $f : S^d \to S^d$ of degree $\neq 0, \pm 1$. Then all the Reidemeister classes of f and of all its iterations are essential.

It is a key point which uses the fact that $M = S^d / G$. In general we need an information that

$$L(f) \neq 0 \implies \forall g \in G, g \neq e, \text{ we have } L(gf) \neq 0$$

Or in a weaker form:

For ∞ many k (of a form which is related to $m = |G|$)

$$L(f^k) \neq 0 \implies \forall g \in G, g \neq e, \text{ we have } L(gf^k) \neq 0.$$
Corollary

Let $\bar{f} : M \to M$ be the map induced by an equivariant map $f : S^d \to S^d$ of degree $\neq 0, \pm 1$. Then all the Reidemeister classes of f and of all its iterations are essential.

It is a key point which uses the fact that $M = S^d / G$. In general we need an information that

$$L(f) \neq 0 \iff \forall g \in G, g \neq e, \text{ we have } L(gf) \neq 0$$

or in a weaker form:

for ∞- many k (of a form which is related to $m = |G|$)

$$L(f^k) \neq 0 \iff \forall g \in G, g \neq e, \text{ we have } L(gf^k) \neq 0.$$
Lemma

If a self-map of the orbit space $\tilde{X} = X/G$, of a free action of a finite group G, is induced by an equivariant map $f : X \to X$ then the map $R_{\tilde{f}} : R(\tilde{f}^k) \to R(\tilde{f}^k)$ is the identity. Thus each orbit of Reidemeister classes consists of exactly one element.

Lemma

The Reidemeister relation of the map $\tilde{f} : \tilde{X} \to \tilde{X}$ induced by an equivariant map $f : X \to X$ is trivial. Thus $R(\tilde{f}) = O_{\tilde{X}} = \mathbb{Z}_m$.

THESE LEMMAS also "HOLD ALWAYS".

Corollary

If $\tilde{f} : M \to M$ ($M = S^d/\mathbb{Z}_m$) is a map induced by an equivariant map $f : S^d \to S^d$, then we have

$$\# \text{Fix}(\tilde{f}^k) \geq NF_k^G(f) \overset{\text{def}}{=} \sum_{r|k} (#IR(\tilde{f}^r)) \cdot r$$
Lemma

If a self-map of the orbit space $\bar{X} = X / G$, of a free action of a finite group G, is induced by an equivariant map $f : X \to X$ then the map $R(\bar{f}) : R(\bar{f}^k) \to R(\bar{f}^k)$ is the identity. Thus each orbit of Reidemeister classes consists of exactly one element.

Lemma

The Reidemeister relation of the map $\bar{f} : \bar{X} \to \bar{X}$ induced by an equivariant map $f : X \to X$ is trivial. Thus $R(\bar{f}) = O_{\bar{X}} = \mathbb{Z}_m$.

Corollary

If $\bar{f} : M \to M$ ($M = S^d / \mathbb{Z}_m$) is a map induced by an equivariant map $f : S^d \to S^d$, then we have

$$\# \text{Fix}(\bar{f}^k) \geq NF_k^G(f) \overset{\text{def}}{=} \sum_{r \mid k} (#IR(\bar{f}^r)) \cdot r$$
Lemma

If a self-map of the orbit space $\tilde{X} = X/G$, of a free action of a finite group G, is induced by an equivariant map $f : X \to X$ then the map $R_{\tilde{f}} : R(\tilde{f}^k) \to R(\tilde{f}^k)$ is the identity. Thus each orbit of Reidemeister classes consists of exactly one element.

Lemma

The Reidemeister relation of the map $\tilde{f} : \tilde{X} \to \tilde{X}$ induced by an equivariant map $f : X \to X$ is trivial. Thus $R(\tilde{f}) = O_{\tilde{X}} = \mathbb{Z}_m$.

THESE LEMMAS also "HOLD ALWAYS".

Corollary

If $\tilde{f} : M \to M$ ($M = S^d/\mathbb{Z}_m$) is a map induced by an equivariant map $f : S^d \to S^d$, then we have

$$\#\text{Fix}(\tilde{f}^k) \geq NF_{k}^G(f) \overset{\text{def}}{=} \sum_{r|k}(\#IR(\tilde{f}^r)) \cdot r$$
Lemma

If a self-map of the orbit space $\tilde{X} = X/G$, of a free action of a finite group G, is induced by an equivariant map $f : X \to X$ then the map $R_{\tilde{f}} : R(\tilde{f}^k) \to R(\tilde{f}^k)$ is the identity. Thus each orbit of Reidemeister classes consists of exactly one element.

Lemma

The Reidemeister relation of the map $\tilde{f} : \tilde{X} \to \tilde{X}$ induced by an equivariant map $f : X \to X$ is trivial. Thus $R(\tilde{f}) = O_{\tilde{X}} = \mathbb{Z}_m$.

THESE LEMMAS also "HOLD ALWAYS".

Corollary

If $\tilde{f} : M \to M$ ($M = S^d/\mathbb{Z}_m$) is a map induced by an equivariant map $f : S^d \to S^d$, then we have

$$\#\text{Fix}(\tilde{f}^k) \geq NF^G_k(f) \overset{\text{def}}{=} \sum_{r|k} (#IR(\tilde{f}^r)) \cdot r$$
IN CONSEQUENCE ”ALWAYS” we have

Corollary

If $\bar{f} : \bar{X} \rightarrow \bar{X}$ ($\bar{X} = X/\mathbb{Z}_m$) is a map induced by an equivariant map $f : X \rightarrow X$, then we have

$$\# \text{Fix}(\bar{f}^k) \geq \sum_{r \mid k} \# \{ \mathcal{R}(\bar{f}^r) : g \in G : L(gf^r) \neq 0 \text{ and } [gf^r] \in \mathcal{IR}(f^r) \}.$$

Thus it remains to find the number of irreducible classes in $\mathcal{R}(\bar{f}^r)$ for such r (or for every r). Let us recall that the class $A \in \mathcal{R}(\bar{f}^k)$ is reducible iff it belongs to the image of the map $i_{kl} : \mathcal{R}(\bar{f}^l) \rightarrow \mathcal{R}(\bar{f}^k)$ for an $l \mid k, l < k$.
IN CONSEQUENCE "ALWAYS" we have

Corollary

If \(\bar{f} : \tilde{X} \to \bar{X} \) \((\tilde{X} = X/\mathbb{Z}_m)\) is a map induced by an equivariant map \(f : X \to X \), then we have

\[
\#\text{Fix}(\bar{f}^k) \geq \sum_{r \mid k} \#\{\mathcal{R}(\bar{f}^r) : g \in G : L(gf^r) \neq 0 \text{ and } [gf^r] \in \mathcal{IR}(f^r)\}.
\]

Thus it remains to find the number of irreducible classes in \(\mathcal{R}(\bar{f}^r) \) for such \(r \) (or for every \(r \)). Let us recall that the class \(A \in \mathcal{R}(\bar{f}^k) \) is reducible iff it belongs to the image of the map \(i_{kl} : \mathcal{R}(\bar{f}^l) \to \mathcal{R}(\bar{f}^k) \) for an \(l \mid k, \ l < k \).
Equivariant Nielsen theory for a free action on arbitrary M

Theorem ([JJWM2])

Let M be a finite polyhedron with a free action of a finite group G and $f : M^G \to M$ an equivariant map. Then there exists an invariant $\mathrm{NF}_n^G(f) \in \{0\} \cup \mathbb{N}$ such that

1. $\mathrm{NF}_n^G(f)$ is a G-homotopy invariant.
2. $\#\mathrm{Fix}(g^k) \geq \mathrm{NF}_n^G(f)$ for each $g \sim_G f$.

Let $G = \mathbb{Z}_{p^a}$ where p is a prime and let $n = p^\alpha$.

Theorem ([JJWM2])

If for every $k \in \mathbb{N}$ all the Reidemeister classes of $[\bar{f}^k]$, where $\bar{f} = f / G$, are essential then

$$\#\mathrm{Fix}(f^\alpha) \geq p^a \cdot p^\alpha = m \cdot n.$$
Equivariant Nielsen theory for a free action on arbitrary M

Theorem ([JJWM2])

Let M be a finite polyhedron with a free action of a finite group G and $f : M^G \to M$ an equivariant map. Then \exists an invariant $\text{NF}_n^G(f) \in \{0\} \cup \mathbb{N}$ such that

1. $\text{NF}_n^G(f)$ is a G-homotopy invariant.
2. $\#\text{Fix}(g^k) \geq \text{NF}_n^G(f)$ for each $g \sim_G f$.

Let $G = \mathbb{Z}_{p^a}$ where p is a prime and let $n = p^\alpha$.

Theorem ([JJWM2])

If for every $k \in \mathbb{N}$ all the Reidemeister classes of $[\bar{f}^k]$, where $\bar{f} = f/G$, are essential then

$$\#\text{Fix}(f^\alpha) \geq p^a \cdot p^\alpha = m \cdot n.$$
Equivariant Nielsen theory for a free action on arbitrary M

Theorem ([JJWM2])

Let M be a finite polyhedron with a free action of a finite group G and $f : M \to M$ an equivariant map. Then \exists an invariant $NF^G_n(f) \in \{0\} \cup \mathbb{N}$ such that

1. $NF^G_n(f)$ is a G-homotopy invariant.
2. $\#\text{Fix}(g^k) \geq NF^G_n(f)$ for each $g \sim_G f$.

Let $G = \mathbb{Z}_{p^a}$ where p is a prime and let $n = p^\alpha$.

Theorem ([JJWM2])

If for every $k \in \mathbb{N}$ all the Reidemeister classes of $[\bar{f}^k]$, where $\bar{f} = f/G$, are essential then

$$\#\text{Fix}(f^\alpha) \geq p^a \cdot p^\alpha = m \cdot n.$$
Equivariant Nielsen theory for a free action on arbitrary M

Theorem ([JJWM2])

Let M be a finite polyhedron with a free action of a finite group G and $f : M^G \to M$ an equivariant map. Then \exists an invariant

$$NF_n^G(f) \in \{0\} \cup \mathbb{N}$$

such that

1. $NF_n^G(f)$ is a G-homotopy invariant.
2. $\#\text{Fix}(g^k) \geq NF_n^G(f)$ for each $g \sim_G f$.

Let $G = \mathbb{Z}_{p^a}$ where p is a prime and let $n = p^\alpha$.

Theorem ([JJWM2])

If for every $k \in \mathbb{N}$ all the Reidemeister classes of $[\bar{f}^k]$, where $\bar{f} = f / G$, are essential then

$$\#\text{Fix}(f^\alpha) \geq p^a \cdot p^\alpha = m \cdot n.$$
Dependence of $k \mapsto N_k^G(f)$ on m

Definition 19

We say that a natural number r *eventually divides* m if r divides a power m^s. In other words r eventually divides m if and only if for a prime number p

$$p | r \Rightarrow p | m$$

We define k' as the greatest divisor of k dividing eventually m.

Theorem

Let G be a finite abelian group, $\# G = m$. Then

$$NF_k(f) = NF_{k'}(f)$$

This gives the statement of the second theorem of previous slide.
Dependence of $k \mapsto N_k^G(f)$ on m

Definition 19

We say that a natural number r *eventually divides* m if r divides a power m^s. In other words r eventually divides m if and only if for a prime number p

$$p | r \Rightarrow p | m$$

We define k' as the greatest divisor of k dividing eventually m.

Theorem

Let G be a finite abelian group, $\#G = m$. Then

$$NF_k(f) = NF_{k'}(f)$$

This gives the statement of the second theorem of previous slide.
Dependence of $k \mapsto N_k^G(f)$ on m

Definition 19

We say that a natural number r *eventually divides* m if r divides a power m^s. In other words r eventually divides m if and only if for a prime number p

$$p | r \Rightarrow p | m$$

We define k' as the greatest divisor of k dividing eventually m.

Theorem

Let G be a finite abelian group, $\# G = m$. Then

$$NF_k(f) = NF_{k'}(f)$$

This gives the statement of the second theorem of previous slide.
Algebraic computation of $NF_k(f)$

Assumption

Assume that every $k \in \mathbb{N}$ all Reidemeister classes of \tilde{f}^k are essential.

Theorem

Let $G = \pi_1 X = \mathbb{Z}_{p_1^{a_1}} \oplus \cdots \oplus \mathbb{Z}_{p_r^{a_r}}$, where p_1, \ldots, p_r denote different primes, be a cyclic group of order $m = p_1^{a_1} \cdots p_r^{a_r}$. Then for k eventually dividing m

$$NF_k^G(f) = \begin{cases} km & \text{if } m \mid k \\ \gcd(m, k) \cdot m & \text{otherwise} \end{cases}$$

If k does not event. divides m then $NF_k^G(f) = 0$
Algebraic computation of $NF_k(f)$

Assumption

Assume that every $k \in \mathbb{N}$ all Reidemeister classes of \tilde{f}^k are essential.

Theorem

Let $G = \pi_1X = \mathbb{Z}_{p_1^{a_1}} \oplus \cdots \oplus \mathbb{Z}_{p_r^{a_r}}$, where p_1, \ldots, p_r denote different primes, be a cyclic group of order $m = p_1^{a_1} \cdots p_r^{a_r}$. Then for k eventually dividing m

$$NF^G_k(f) = \begin{cases} km & \text{if } m \mid k \\ \gcd(m, k) \cdot m & \text{otherwise} \end{cases}$$

If k does not event. divides m then $NF^G_k(f) = 0$
We recall that \(R(\bar{f}^k) = \mathbb{Z}_p \) and \(i_{p^\alpha,p^\beta}[x] = [p^{\alpha-\beta} \cdot x] \). This implies that:

1. all classes in \(OR(\bar{f}^1) = R(\bar{f}^1) = \mathbb{Z}_p \) are irreducible while for \(\alpha \geq 1 \)
2. \([0] \in R(\bar{f}^{p^\alpha}) \) is reducible and the remaining \(p - 1 \) classes in \(R(\bar{f}^{p^\alpha}) \) are irreducible.

Proposition

Under the above assumptions (and \(\alpha \geq 1 \))

\[
NF_{\mathbb{Z}_p}^{p^\alpha}(f) = p + \sum_{\beta}(p^{\beta+2} - p^{\beta+1})
\]

where the summation runs over the set \(\{\beta \in \mathbb{Z}; 0 \leq \beta \leq \alpha - 1, L(f^{p^\beta}) \neq 0\} \)
We recall that $\mathcal{R}(\tilde{f}^k) = \mathbb{Z}_p$ and $i_{p^\alpha,p^\beta}[x] = [p^{\alpha-\beta} \cdot x]$. This implies that:

1. all classes in $\mathcal{O}(\tilde{f}) = \mathcal{R}(\tilde{f}) = \mathbb{Z}_p$ are irreducible while for $\alpha \geq 1$

2. $[0] \in \mathcal{R}^{\mathcal{Z}_p}(\tilde{f}^{p^\alpha})$ is reducible and the remaining $p - 1$ classes in $\mathcal{R}(\tilde{f}^{p^\alpha})$ are irreducible.

Proposition

Under the above assumptions (and $\alpha \geq 1$)

$$NF_{p^\alpha}^{\mathbb{Z}_p}(f) = p + \sum_{\beta}(p^{\beta+2} - p^{\beta+1})$$

where the summation runs over the set

$\{\beta \in \mathbb{Z}; 0 \leq \beta \leq \alpha - 1 , L(f^{p^\beta}) \neq 0\}$
Let X be a simply-connected finite polyhedron with a free action of a finite group G and $f : X \to X$ be a G-equivariant map. Assume that the action of G on $H_\ast(X; \mathbb{Q})$ is trivial. If \exists a prime $p \mid \#G$ and \exists $a \in \mathbb{N}$ such that

$$L(f^{p^a}) \not\equiv 0 \mod (p^{a+1})$$

then f has infinitely many periodic points and

$$\limsup \frac{\#\text{Fix}(f^n)}{n} \geq p.$$

