
Jagiellonian University

Master Thesis

The Markov Blanket Concept in
Bayesian Networks and Dynamic

Bayesian Networks and
Convergence Assessment in
Graphical Model Selection

Problems

Tomasz Ku laga

October 2006

Contents

1 Introduction 1

2 Bayesian Networks 4

2.1 Learning . 5

2.2 MCMC with Bayesian Networks . 8

2.2.1 Metropolis-Hastings algorithm 8

2.2.2 Gibbs sampling . 10

3 Dynamic Bayesian Networks 12

3.1 MCMC with DBN . 16

4 Markov Blanket 18

4.1 MCMC sampling using the Markov Blanket concept 23

4.1.1 New algorithm . 27

4.1.2 Evaluation . 28

5 Convergence diagnostics 29

5.1 Labelling function L . 30

5.2 Thinning parameter . 35

5.3 Chi-squared convergence assessment . 37

6 Conclusions and further work 39

i

Chapter 1

Introduction

Relations and dependencies between some entities, such as genes in genetics or any

others, can be expressed in a very convenient and clear way by use of the Bayesian Net-

work idea. It is a nice graphical representation in which edges represent direct relations

between nodes. Having some experimental data we are trying to find the best graphical

structure that would explain the dependencies inside the data set. For a small number

of nodes, like about 5, we are able to consider all possible models, calculate for them

the posterior model probabilities, and choose the best one or the best few. But where

the number of nodes grows, the number of possible models explodes at exponential

rate. The solution to this problem is to use the Markov chain Monte Carlo simulation

to obtain an approximate sample from the posterior model distribution. In chapter 2

I introduce the concept of Bayesian Network and explain how the MCMC simulation

is performed in this framework by the two most known methods: Metropolis-Hastings

algorithm and Gibbs sampler.

However, the Bayesian Network concept has some limitations. The graphical struc-

ture that it represents has to be a proper Directed Acyclic Graph i.e. it cannot consist of

cycles or loops. For example the edge starting and ending in the same node is forbidden

in a Directed Acyclic Graph. But it is not hard to imagine such a situation where the

possibility of these kind of edges is advisable. In a problem of discovering relationships

between genes, sometimes it is the case that some particular gene can be self regulated,

maybe together with some other genes. So the edge which starts and ends in the node

which represents this gene should be present in a proper model. For this kind of applica-

tions the data set, on which basis we are trying to find the best model, is also different.

The observations have to be collected over some time points. We cannot see the result

of some dependency instantaneously, when nodes are influencing themselves. Formally

1

the data is a sequence of consecutive observations. One idea of representing such a set

of relationships is called a Dynamic Bayesian Network. In chapter 3 I introduce this

concept in details and also explain how the MCMC simulation can be performed in this

framework. For more details on this topic see Husmeier (2003).

In chapter 4 first I introduce the concept of a Markov Blanket for the BN, then

I define this object for the dynamic structure. Finally I investigate a very interesting

algorithm proposed by Riggelsen (2005) which is based on the idea of the Markov Blan-

ket and which is used to perform MCMC simulation. However, although the proposition

seems to be very attractive, especially in the light of speed of convergence to the limit

distribution, unfortunately it turns out that this algorithm still needs some corrections

and cannot be used in the present form because it gives improper results. Moreover

I show, that the way to make this algorithm work properly is not so easy. I propose

and test one of the possible corrections in practice. Although I justify that a new al-

gorithm is correct, it turns out that the speed of simulation with use of this algorithm

is not satisfactory. It still needs some optimization work which can be the further work

in this area.

An important issue in the MCMC context is the convergence assessment. In other

words when can we stop the simulation to have some confidence that the output can

really be seen as taken from the limit distribution. There has been many methods

proposed over the last years but not all of these can be applied in the graphical model

selection framework. The model space is very specific. A model consists of many

edges which can take only one of two values, presence or absence. One of the methods

appropriate for this problem, the Chi-squared test, is presented in chapter 5. I also

present some aspects of this test like making the output of the simulation approximately

independent, which is an important assumption for this statistical test. The convergence

assessment technique, and later deduction about the true structure, is performed not

on the particular models sampled during the simulation, but on the labels which are

assigned to each of the models. This generalization is a new idea which I propose for

this kind of framework. The reason for this operation is that it allows us to significantly

reduce the huge model space by giving the same label to a group of models and thus

to avoid the super-exponential explosion of the size of the model space. On the other

hand, it causes loss of information with comparison to the Markov chain defined on the

models. However, we have no restriction on how this labelling function should look like

so the reduction can be done in many different ways, depending on the problem we are

interested in.

2

The algorithm presented in chapter 4 is implemented in Matlab

(file ’dbn mb sampling.m’ together with support file ’log marg prob node new.m’) and

it uses the Bayes Net Toolbox (BNT) which is needed to work properly. BNT can be

downloaded from:

http://bnt.sourceforge.net/usage.html

The results from the simulation are stored in text file and next the result file is

processed by perl script (file ’process.pl’) which returns values of appropriate statistics.

These values are again recalculated to obtain p-values with use of a C++ program

(file ’p val.cpp’). This program requires the dcdflib library which can be downloaded

from:

http://www.csit.fsu.edu/ burkardt/cpp src/dcdflib/dcdflib.html

3

Chapter 2

Bayesian Networks

A Bayesian Network (BN) is a very convenient and easy way of representing depen-

dencies between some entities. In our case these entities are random variables but BNs

can also be used in other applications. By such a network we mean a Directed Acyclic

Graph (DAG) where nodes correspond to random variables and directed edges between

nodes that represent conditional dependencies together with conditional distributions

describing these dependencies. The edge from node X to Y is present when values of Y

depends directly on values of X. In such a case we say that X is a parent of Y and Y is

a child of X. If there is no edge between two vertices it means that they are independent

given parents of both vertices. The word Acyclic means that there is no possibility that

any node is its own indirect child (or parent). In other words, there is no directed path

starting and ending in the same node. Let us see this on a well known example.

Figure 2.1: Example of a Bayesian Network

4

The graphical structure consist of the set of nodes {C (=Cloudy), S (=Sprinkler),

R (=Rain), W (=Wet glass)} and the set of directed edges {(C, S),(C, R), (S, W),

(R, W)}. Nodes in this example are discrete and take only two values True or False.

To completely define Bayesian Network we should also define conditional probabilities

P (X|parents(X)) like P (S = True|C = True) etc.

From now on we will consider Bayesian Networks only for discrete random variables.

We treat nodes as these random variables.

Such a structure, besides the fact that it describes dependencies between random

variables very clearly and understandable, also gives a way to rewrite joint probabil-

ity distribution in a more simple way. For nodes {X1, . . . , Xn} we can always do a

factorization as follows

P (X1, . . . , Xn) =
n−1∏
i=1

P (Xi|Xi+1, . . . , .Xn)P (Xn).

If nodes are ordered in such a way that for each node the indices of its parents are higher

then the index of the node itself (we can do that since there are no directed cycles in the

graph), then using the fact that nodes are only conditioned on their parents we can

rewrite formula for the joint probability distribution as follows

P (X1, . . . , Xn) =
n−1∏
i=1

P (Xi|parents(Xi))P (Xn).

In our example this takes the form

P (C, R, S,W) = P (C)P (S|C)P (R|C)P (W |S, R).

2.1 Learning

Learning a Bayesian Network consists of discovering an optimal set of edges and then

finding the best parameters that will describe it. We do this on the basis of the data D.

The data consist of observations of the values of random variables. Because the set of

nodes does never change, as a model M we mean some particular set of edges between

these nodes. Finding the best parameters describing optimal set of edges is not so hard

or crucial in the learning process. The first and main step focuses on finding the best

5

model in the model space M that has maximum a posteriori distribution

M̂ = argmaxM∈MP (M |D),

where D denote the data. For this we take a Bayesian approach.

We consider networks with n discrete random variables (nodes) (X1, . . . , Xn). Dur-

ing the process of finding the best structure we need to equip each model with the

conditional distributions and their parameters with some prior distribution. Let Θ de-

note these parameters. For prior distribution we choose the following product Dirichlet

distribution

P (Θ|M) =
n∏

i=1

∏
πi

Dir(θXi|πi
|α),

where πi runs through possible values of parents of node Xi and α is the vector of

hyper parameters that represents the priori counts for each configuration of nodes and

its parents values α(xi, πi). We see that α(πi) =
∑

xi
α(xi, πi). So we have that

P (Θ|M) =
n∏

i=1

∏
πi

Dir(θXi|πi
|α) =

n∏
i=1

∏
πi

C(i, πi, α)
∏
xi

θ
α(xi,πi)−1
xi|πi

,

with C(i, πi, α) the normalising factor of Dirichlet distribution

C(i, πi, α) =
Γ(α(πi))∏

xi

Γ(α(xi, πi))
,

where Γ(·) is the gamma function.

The posterior distribution for parameters is again product Dirichlet and takes the

data D into account. We denote by d the vector of counts for a particular configuration

of nodes and parents values in data i.e. d(xi, πi). So

P (Θ|D, M) =
n∏

i=1

∏
πi

Dir(θxi|πi
|α + d) =

n∏
i=1

∏
πi

C(i, πi, α + d)
∏
xi

θ
α(xi,πi)+d(xi,πi)−1
xi|πi

.

We can also rewrite posteriori distribution for parameters as follows

P (Θ|D, M) =
P (Θ, D,M)

P (D, M)
=

P (D|Θ, M)P (Θ, M)

P (D, M)
=

P (D|Θ, M)P (Θ|M)

P (D|M)
.

6

And since

P (D|Θ, M) =
n∏

i=1

∏
πi

∏
xi

θ
d(xi,πi)
xi|πi

,

thus we have now close formula for marginal likelihood

P (D|M) =
P (D|Θ, M)P (Θ|M)

P (Θ|D, M)

=

n∏
i=1

∏
πi

C(i, πi, α)
∏
xi

θ
α(xi,πi)+d(xi,πi)−1
xi|πi

n∏
i=1

∏
πi

C(i, πi, α + d)
∏
xi

θ
α(xi,πi)+d(xi,πi)−1
xi|πi

=
n∏

i=1

∏
πi

Γ(α(πi))

Γ(α(πi) + d(πi))

∏
xi

Γ(α(xi, πi) + d(xi, πi))

Γ(α(xi, πi))
.

Applying Bayes’ law allows as to compute the posterior distribution for each model

as follows

P (M |D) =
P (D|M)P (M)∑

m∈M

P (D|m)P (m)
.

However here arise some problems. The main one is the computational burden

concerning computing the denominator which is equivalent to computing this poste-

rior distribution for each model. When we consider Bayesian Networks with n nodes

the number of possible models is of order 2n2

. For some applications like genetic regula-

tory interactions the number of nodes we consider can be 20, 50 or 100 and the problem

becomes computationally infeasible. The second problem is, that we can discover that

more than one model has approximately the maximum a posteriori distribution and

that these models differ widely. What we can do and what is also very interesting

in applications is to compute a posteriori value of some features like having some par-

ticular edge from node Xi to Xj (1 if yes and 0 otherwise) or any other feature that we

can compute from a model. If we denote this feature by ∆ then we can average over

the whole model space

E[∆(M)|D] =
∑

m∈M

∆(m)P (m|D).

7

However we still have to handle this computational issue. A possible solution for

this problem is to use Markov chain Monte Carlo (MCMC) simulation which allows us

to sample from this posterior distribution.

2.2 MCMC with Bayesian Networks

The main idea of Markov chain Monte Carlo simulations is to create such a Markov

chain that its invariant distribution will be the distribution of interest π. A sufficient

condition for that is to satisfy detailed balanced equation which has the following form

p(Mi, Mj)π(Mi) = p(Mj, Mi)π(Mj),

where p(Mi, Mj) is the probability of changing from state Mi to state Mj. If this

condition is satisfied, π appears to be the invariant distribution of the chain. Moreover

we need to satisfy some assumptions to be sure that this Markov chain will converge to

this distribution. It is sufficient to show that the probability of staying in the same state

is positive (which guarantees aperiodicity of the chain) and also that the probability

of reaching any other state after a finite number of transitions is positive (the chain

is irreducible). Convergence to the invariant distribution is guaranteed by Ergodic

Theorem. For details and proof see Jakubowski and Sztencel (2000).

In order to perform MCMC such that the distribution of interest is the stationary

distribution, this distribution needs to be known up to a constant. There are two

well known methods to perform MCMC: Metropolis-Hastings algorithm and Gibbs

sampling. We will now go to discuss them in more details.

2.2.1 Metropolis-Hastings algorithm

In our case the distribution of interest is the posterior distribution of the model, in par-

ticular the posterior distribution of the set of edges.

When travelling the model space first we choose a new model using some arbitrary

proposal distribution q(Mt+1|Mt). This distribution is usually considered as uniform

for a neighbourhood of the graph that we are visiting and the graph itself. The Neigh-

bourhood is constructed by reversing, deleting or adding a single edge with restriction

that every structure must be DAG. After generating a new model we accept this move

8

with acceptance probability given by formula

a(Mt, Mt+1) = min

{
1,

q(Mt|Mt+1)P (Mt+1|D)

q(Mt+1|Mt)P (Mt|D)

}
.

When the step is rejected we stay in the same state and a new proposal is generated.

We will show that the detailed balance equation holds. Let us consider two different

models M
′
and M

′′
. The probability of transition from M

′
to M

′′
is given by formula

p(M
′
, M

′′
) = q(M

′′|M ′
)a(M

′
, M

′′
). Now we have that

p(M
′
, M

′′
)P (M

′|D) = q(M
′′|M ′

)a(M
′
, M

′′
)P (M

′|D)

= q(M
′′|M ′

) min

{
1,

q(M
′|M ′′

)P (M
′′|D)

q(M ′′|M ′)P (M ′|D)

}
P (M

′|D)

= q(M
′|M ′′

) min

{
q(M

′′|M ′
)P (M

′|D)

q(M ′|M ′′)P (M ′′|D)
, 1

}
P (M

′′|D)

= p(M
′
, M

′′
)P (M

′|D).

So indeed P (M |D) is the invariant distribution of the chain.

We can simplify the acceptance ratio

a(Mt, Mt+1) = min

{
1,

q(Mt|Mt+1)P (Mt+1|D)

q(Mt+1|Mt)P (Mt|D)

}
= min

{
1,

q(Mt|Mt+1)P (D|Mt+1)P (Mt+1)P (D)

q(Mt+1|Mt)P (D|Mt)P (Mt)P (D)

}
= min

{
1,

q(Mt|Mt+1)P (D|Mt+1)P (Mt+1)

q(Mt+1|Mt)P (D|Mt)P (Mt)

}
.

The probabilities P (D) cancel out. If we assume the uniform prior distribution for mod-

els then probabilities P (Mt) and P (Mt+1) also cancels out. But sometimes when we

have some knowledge on the topic it would be more advisable to put some other prior

distribution for the models. We point out that in some applications, like genetics,

in which the number of considered nodes is big and the data is sparse, the prior prob-

ability which we put on the models plays important role.

For this sampler we can reach any model with finite number of steps with positive

probability so the chain is irreducible. In every step we can choose with positive prob-

ability to stay in the current state which ensures aperiodicity. Due to ergodic theorem

we know that this chain converges to posterior model distribution.

9

2.2.2 Gibbs sampling

Let us consider the set E of all possible edges in a graph with n nodes, thus E =

{E1, . . . , Ec}, where c = n(n−1)
2

. Each edge can take one direction or can be absent.

We use a notion e−i to denote e1, . . . , ei−1, ei+1, . . . , ec. Given some visitation scheme

or doing this in a random way we sample each edge of E using full conditionals given

any other edge and data:

P (Ei|e−i, D) =
P (Ei, e−i|D)∑

ei

P (ei, e−i|D)
(2.1)

=
P (D|Ei, e−i)P (Ei, e−i)P (D)∑
ei

P (D|ei, e−i)P (ei, e−i)P (D)

=
P (D|Ei, e−i)P (Ei, e−i)∑
ei

P (D|ei, e−i)P (ei, e−i)
,

where the terms concerning the model prior distribution cancel out if this distribu-

tion is assumed to be uniform. To show that detailed balance equations holds let

us consider two models which differ only on one edge M
′

=
{
e1, . . . , e

′
i, . . . , ec

}
and

M
′′

=
{
e1, . . . , e

′′
i , . . . , ec

}
so that

p(M
′
, M

′′
) = P (e

′′

i |e−i, D).

Transitions are allowed only for such a models. Now we have that:

p(M
′
, M

′′
)P (M

′|D) =
P (e

′′
i , e−i|D)∑

ei

P (ei, e−i|D)
P (e

′

i, e−i|D)

=
P (e

′
i, e−i|D)∑

ei

P (ei, e−i|D)
P (e

′′

i , e−i|D)

= p(M
′′
, M

′
)P (M

′′|D),

so P (M |D) is the invariant distribution of the chain.

10

When sampling we consider only edges that form together a DAG. As we see the

chain is irreducible because the probability of going to any other state is positive.

We sample edges in some order or in a random way so every edge can be changed.

For some fixed order there can be, however, a problem that we cannot add some edge

to graph because the addition makes a cycle in the graph. But we still can do it in

the next visitation if other edges from the potential cycle will be deleted or reversed.

In every draw we can also stay in the same state with positive probability which ensures

aperiodicity. Due to ergodic theorem we know this chain converges to posteriori model

distribution.

When we sample an edge the probabilities in numerator and denominator are very

similar and factorize in such a way that most of the factors cancel out. The only ones

that stay are those concerning vertices of the drawn edge i.e. only factors for vertices

that have a different parent set in the proposed model.

In fact we can also treat Gibbs sampling as a special case of Metropolis Hastings

algorithm. The proposal distribution q(Mt+1|Mt) is the full conditional from the Gibbs

sampler P (Ek|e−k, D). For the proposed step from M
′
= {e′

k, e−k} to M
′′

= {e′′

k, e−k}
the acceptance probability simplifies in the following manner

a(M
′
, M

′′
) = min

{
1,

q(M
′|M ′′

)P (M
′′|D)

q(M ′′|M ′)P (M ′|D)

}

= min


1,

P (e
′

k|e−k, D)∑
ek

P (ek|e−k, D)
P (e

′′

k, e−k|D)

P (e
′′

k|e−k, D)∑
ek

P (ek|e−k, D)
P (e

′
k, e−k|D)


= min

{
1,

P (e
′

k|e−k, D)P (e
′′

k|e−k, D)P (e−k|D)

P (e
′′
k|e−k, D)P (e

′
k|e−k, D)P (e−k|D)

}
= 1.

11

Chapter 3

Dynamic Bayesian Networks

Dynamic Bayesian Networks (DBNs) can describe certain stochastic processes that

change over time. Let us denote states of the process indexed by time: {X[1], X[2], . . .}.
Each time point which we call time-slice X[t] is a random vector X[t] = {X1[t], . . . , Xn[t]}.
The structure of a DBN is similar to that of a BN. We have nodes that represent random

variables Xi[t], i = 1, . . . , n and edges between them to represent the conditional depen-

dencies. In the general case one consider intra-slice dependencies which are described

by a BN within a time-slice as well as inter-slice dependencies which are connections

between consecutive or even more distant slices. Since states of the process are indexed

by time points and we cannot move back in time the inter connections always point to

the future. We can see this on an example.

Figure 3.1: Example of a Dynamic Bayesian Network.

However adding more distant dependencies causes a great increase of the complexity

12

of the model. To fully characterize a DBN one has to give also conditional distributions,

but as in the BN case we are interested in discovering the unknown structure receding

optimization of parameters for the background. On the other hand, we can only perform

finding the best parameters for some specified graph and for this reason we need to find

the optimal structure first. We focus on the latter issue.

We concentrate on models with no intra-slice dependencies. Moreover we consider

only processes that are Markovian i.e. the future step does not depend on the past but

only on the present state.

P (X[t + 1]|X[t], . . . , X[1]) = P (X[t + 1]|X[t]) ∀t ∈ N.

In other words, we assume that inter-slice dependencies are allowed only between ad-

joining time-slices. We will try to find the best model that describes transitions between

slices made in time. The word ’dynamic’ does not describe a dynamic process but is

used only to emphasize the possibility of inter-slice dependencies in order to distinguish

a DBN from a BN where these dependencies are not allowed. The process itself is

assumed to be stationary which means

P (X[t + 2]|X[t + 1]) = P (X[t + 1]|X[t]) ∀t ∈ N.

Dynamic Bayesian Networks do not change over time but are constant and our goal is

to discover them.

So in our framework a DBN reduces to an inter graph which contains of two adjoining

time-slices X[t] and X[t + 1] and a set of edges between them to represent inter-slice

dependencies. As a model M we will consider only the set of edges of inter graph

because the set of nodes is fixed and does not change at all. We can also identify our

model in a very clear and convenient way with the n×n binary matrix B where Bij = 1

when there is a connection from Xi[t] to Xj[t + 1] and Bij = 0 otherwise. Since the

process is stationary we can look only at two first time-slices X[1] and X[2]. Let us see

this on an example. We have some hypothetical inter graph

13

Figure 3.2: Example of the inter graph.

and the corresponding matrix B:

B =

 1 0 0

1 0 0

1 1 1

 .

There are some advantages of using such restricted DNBs with no intra-slice depen-

dencies and with connections only between consecutive time-slices over ordinary BNs.

The first advantage is that in the BN case each graph is not always distinct from the

others in terms of the marginal likelihood, and hence of posterior probability distribu-

tion given the data. It is described by equivalence class of DAGs. This equivalence class

consists graphs which has the same skeleton but different v-structure. For details see

Verma and Pearl (1990) and Chickering (2002a). This equivalence class can be repre-

sented by a completed Partially Directed Acyclic Graph that contains both directed and

undirected edges. For further studies see Chickering (2002b). An undirected edge in

PDAG means that the posterior probability for both graphs, one with the edge directed

in one way and the second one with the edge pointed backwards, are the same. This

entails that we lose substantial information about direction of the edge and therefore

about causal interactions between variables. This is not the case in a DBN because

edges always point to the future. There is no possibility of reversing an edge which

would mean that the result precedes the cause.

A second and even more important advantage is that in some applications we are

interested in graphs that allow cycles in the structure. Since feedback is an essential

feature of biological systems it would be advisable to consider structures with cycles

and loops. By a loop we mean the edge that starts and ends in the same node. When

we model some process by a DBN with only inter-slice dependencies we assume that

interactions are not instantaneous but that it takes some time for one variable to in-

14

fluence the other and that the result can be seen in the next time point, and the same

concerns loops or cycles where feedback is delayed. So it does not pose a problem hav-

ing such a network with cycles or loops to unfold it in time to create a dynamic graph

with inter-slice dependencies. Let us see this on an example.

Figure 3.3: Graph with cycles and loops and corresponding unfolded dynamic structure.

A next advantage of simplified DBNs is that the model space is more simple. If we

sample possible graphs using an MCMC sampler in the static case, then for every step

we have to check if the graph that we consider is a DAG. Especially for the Metropolis

Hastings algorithm where we need to verify this issue for all neighbouring graphs in

order to compute the proposal distribution. For bigger number of nodes this can be

really time consuming which makes our sampler running extremely slow. For DBNs

this problem does not hold due to the fact that we have no restrictions for the graph

structure. Every possible graph is allowed.

15

3.1 MCMC with DBN

The number of possible models for DBN reduced in such a way as described in the

previous section, for a set of n random variables {X1, . . . , Xn} is even bigger than in

BN and now equals 2n2
. So it is tempting to use Monte Carlo Markov chain simulation

also to this case to avoid a lot of computations that concern finding the normalizing

constant for the posterior distribution of the structures given the data. We can do this

in the following manner.

In the same way as for BN we deal only with random variables that can take discrete

values. Let us denote by D the data set. It consists of the observations collected over

T time points:

D = {d[1], . . . , d[T]}.

Each observation

d[t] = {d1[t], . . . , dn[t]}

contains the values of each random variable Xi observed at time t denoted by di[t]. The

observations are assumed to be collected at consecutive instants. It is an important

issue and needs to be pointed out that the data that we deal with has to be dependent.

This is significantly different from the BN case where observations were assumed to be

i.i.d. In the DBN setting a particular observation at time t+1 needs to be related to the

previous one collected at time t. An inter graph, in our DBN framework, represents the

relations between two adjoining time-points so what we model is an invariable process

between consecutive observations in the data.

To perform MCMC simulation we rearrange the data in the following way. We take

the pairs of adjoining observations collected at times t and t + 1 and transform them

to the common vector having the form

d′[t] = {d1[t], . . . , dn[t], d1[t + 1], . . . , dn[t + 1]} t = 1, . . . , T − 1.

The new data set D′ contains T − 1 vectors

D′ = {d′[1], . . . , d′[T − 1]}.

Each vector d′[t] is actually the observed transition between two successive time-points

t and t + 1 in the data set D.

16

It is also possible that we have more than just one data set and every of these sets

consist of a sequence of consecutive observations where the dependencies within the

data described above hold and are the same for each data set. In other words the same

process has generated each of these sets. Let us assume that we have K data sets

D1, . . . , DK where

Dk = {dk[1], . . . , dk[Tk]} k = 1, . . . , K.

Each observation is again a vector

dk[t] = {dk1[t], . . . , dkn[k]}.

It contains of observed values of random variables {X1, . . . , Xn} at time t in data set

Dk. We perform the same rearrangement for each data set Dk as for the single data

set. New observations take the form

dk′[t] = {dk′1[t], . . . , dk′n[t], dk′1[t + 1], . . . , dk′n[t + 1]}

for k = 1, . . . , K and t = 1, . . . , Tk − 1. The new data set D′ is formed by gathering all

new observations:

D′ = {d1′[1], . . . , d1′[T1], . . . , dK ′[1], . . . , dK ′[TK]}.

Having prepared the data we need to transform the models to fit them to the new

observation set. The model is represented as the n× n matrix which is identified with

the inter-graph between two first time-slices X[1] and X[2]. We join these two slices

into one set of nodes

{X1[1], . . . , Xn[1], X1[2], . . . , Xn[2]}.

We keep the existing edges and what we obtain is a proper DAG structure. Now

we can look at these new models as at BNs and use prepared earlier data to score

them as described in Chapter 2. Transformations have been made in such a way that

the new model reflects transitions between two time-slices and the new data contains

information about transitions made between consecutive observations in the data set

even if it consists of more than just one sequence of data. So we travel the space of

binary n× n matrices, which is extremely easy since we have no restrictions on such a

matrix, and score them using the method presented above.

17

Chapter 4

Markov Blanket

When performing MCMC simulation with BNs or DBNs one has to choose how to

traverse the model space. The simplest way to do this is to look at single edge compo-

nents. For the Gibbs sampler this means that at every iteration we draw a single edge

from the full conditional. The edge can be chosen every time in a random way or by

using some visitation scheme. For the Metropolis-Hastings algorithm we move to the

neighbouring structure which differs only in one single edge from the structure that we

are in. However, the problem arises when we are moving around some local maximum.

In other words when we travel through some likely structures that have quite good

scores but the scores of the surrounding structures are very low. If we sample edges in

the random way or we chose ”bad” visitation scheme, we can easily get trapped in a

local maximum for a very long time. This can make our sampler almost reducible i.e.

the probability of going to some structure which is far away in the model space can be

reduced almost to zero due to obstacles related to being trapped in the local maximum.

Although theoretically it is guaranteed that we eventually will escape from such a peak

in the posterior distribution, in practice this fact can be useless.

In general, to make our MCMC sampler work better, we should consider components

that are as ”self-contained” as possible. In other words, this should be considered as

a unit that cannot be split. However, the BNs and DBNs score of the node depends

directly on single edges due to the fact that it is computed on the basis of the parents

set, we can also look at more than just one edge component and try to find some sets

of edges that form closely relationships inside. One approach proposed by Riggelsen

(2005) is based on the Markov Blanket concept and will be our main interest from now

on.

18

We start by introducing the Markov Blanket notion together with some explanation

why the set of edges based on this concept can be treated as a single component.

Let us consider a set of random variables {X1, . . . , Xn}. As before, by a model M we

mean a set of edges between nodes that represent the random variables {X1, . . . , Xn} or

{X1[1], . . . , Xn[1], X1[2], . . . , Xn[2]} for the BN or DBN case, respectively. For the DBN

case we allow only connections between time-slices, leaving the intra-graph empty. We

start by introducing the parents set for node Xi.

Par(Xi) = {Xj : (Xj, Xi) ∈ M}.

The edges which start in nodes taken from Par(Xi) and end in node Xi surely belong

to the common set of relationships, because they directly explain how the node Xi is

influenced. The node Xi is conditionally independent of any other node conditioned on

the parents set of Xi. The explanation of impact on the behaviour of the node Xi is

complete. Although the dependency goes even further to parents sets of Xi’s parents

and so on, the impact gets less and less important with every step so we narrow our

interest down to the direct dependencies set. Beside edges that explain somehow the

behaviour of the node Xi we can also look in the opposite direction and ask how the

node Xi influences other nodes in the structure. These dependencies can be expressed

as the set of edges which start at the node Xi and end in a node taken from children

set of node Xi. We define the children set of node Xi as follows.

Ch(Xi) = {Xj : (Xi, Xj) ∈ M}.

As before, dependencies go deeper in the structure through children’s children sets, but

we only look at direct relationships so we restrict ourselves to the direct children set.

But nodes from the children set of the node Xi are not only influenced by the node

Xi itself but also by its parents and therefore if we consider edges that came out from

node Xi we should also include to this set the edges that end up in Xi’s children but

start in its children’s parents. These edges complete the explanation of the influence of

Xi on its children.

19

Now we formed the set of edges that somehow make up a coherent system that

describes the behaviour of the node Xi and its impact on other nodes. But when we

travel the model space using MCMC sampler, what we meet is not necessarily the

correct structure and the set of edges that we determine may not be true but probably

some connections are mistaken and our goal is to learn the true graph. Moreover, when

there is more than just one unique best structure but there are graphs equally good

with the highest score, we should not get accustomed to the encountered connections.

So the idea is to broaden the component that we sample to the set of all edges between

nodes involved in the set of edges described above. To define it formally we can use

the notion of Markov Blanket. The Markov Blanket in a BN for node Xi which we

denote by MB(Xi) is a set of nodes composed of Xi’s parents, its children and parents

of its children. Formally the definition of Markov Blanket in a BN, or more general in

a graph, is as follows.

MB(Xi) = Par(Xi) ∪ Ch(Xi) ∪
⋃

Y ∈Ch(Xi)

Par(Y).

Let us see this on an example.

Figure 4.1: Example of Markov Blanket for node Xi.

20

Our interest is in DBNs, so also for this case we need to introduce the concept of

a Markov Blanket. As described in chapter 3 we have two equivalent representations

of our dynamic model. The first one is a graph between the first two time slices

X[1] and X[2]. However, for the Markov Blanket issue this representation has one big

disadvantage. Parents that we can have in any situation can only be taken from the

first time slice and children from the second one. But when sampling component based

on Markov Blanket we want to have a possibility of changing the connections within

the component, for example by adding backward edge and therefore making a child

from a parent and vice versa. So we merge these two time-slices into one by connecting

corresponding nodes from both slices. We join nodes Xi[1] and Xi[2] into one new node

Xi but we keep the current edge structure between the nodes. Actually, this is reversing

of the unfolding process described in chapter 3 so we call this merging process folding.

And then we compute the Markov Blanket for node Xi within the folded graph just as

described for BN. We can see that our second representation of dynamic model, binary

n× n matrix B, is in fact the Adjacency Matrix for the folded graph i.e. if there is an

edge from Xi to Xj then Bij = 1 otherwise Bij = 0. By this fact we can define Markov

Blanket for the folded graph in alternative way using matrix B.

MB(Xi) = {Xj : Bji = 1 ∨Bij = 1 ∨ ∃kBik = Bjk = 1}.

Then, if we unfold the graph again to see the dynamic structure between two time-

slices, we get a set of nodes which we will call the Markov Blanket for DBN, which

consist of two identically sets of nodes, where each of them correspond to the Markov

Blanket within a time-slice.

MB(Xi)[r] = {Xj[r] : Xj ∈ MB(Xi)}, r = 1, 2.

Having described what a Markov Blanket for DBN is, we can define the currently

relevant edges set for node Xi as

E ′

i = {(Xj[1], Xk[2]) : Xj[1] ∈ MB(Xi)[1] ∧Xk[2] ∈ MB(Xi)[2]}.

In this set we consider not only connections between current parents and children in

the structure that allows us to determine the Markov Blanket but also all other possible

edges within this set. The only restriction is due to the fact, that this is a dynamic

structure so parents can be taken only from X[1] and children from X[2].

21

However, when we consider our new component as E ′
i we restrict ourselves only to

the edges between nodes that are present in the current Markov Blanket. But if we look

at folded graph, we can deduce that it would be advisable to consider also edges between

node Xi and nodes which are outside MB(Xi) to allow our Markov Blanket to grow (or

shrink). We have no confidence that current Markov Blanket contains all important

nodes and we can discover true structure only by modifying connections between nodes

inside MB(Xi). So after unfolding again the graph to dynamic structure, we introduce

another set of edges which we refer to as a potentially relevant edges set for node Xi

given by definition

E ′′

i = {(Xj[1], Xk[2]) : Xj[1] = Xi[1] ∨Xk[2] = Xi[2]} \ E ′
.

Now we come to the notion of the relevant edges set for node Xi which we define as

the union of the two previously defined sets.

Ei = E ′

i ∪ E
′′

i .

As a component that we would sample we take Ei. It consists of the coherent set of

closely related edges between vertices from Markov Blanket, which we determine in the

current graph and the potentially important edges between node of interest and any

other node taken from outside Makrov Blanket.

When we use bigger components than just single edge for drawing it is more likely

to escape from the local maximum. We move through the model space more rapidly

and it is easier to cross the low valleys in the posterior distribution. It is also more

favourable from the limit distribution point of view. When we move through the whole

model space in a more dispersed manner, we first get the general idea how the posterior

distribution looks like and while the sampler is running we improve the shape of this

density. If we move slowly we discover more or less correct shape but we still have areas

that we don’t know anything about.

Another important advantage of sampling with use of the concept of Markov Blanket

is that the components that we would sample are not disjoint. The edges that belong

to intersection of many relevant edges sets can be seen as more important for the whole

structure. So if we consider these edges more often during the sampling process we can

have more confidence that the values assigned to these edges are more proper.

22

4.1 MCMC sampling using the Markov Blanket con-

cept

Riggelsen (2005) proposed an algorithm, that one could call ’block Gibbs sampling’,

in which he used the idea of Markov Blanket. As a block we mean a self-contained

component i.e. the relevant edges set. Now we present this algorithm in its original

form. The ’block Gibbs sampling’ for every Ei is performed by the Metropolis-Hastings

algorithm applied to single edges inside the component. We repeat Metropolis-Hastings

steps for some fixed number of times. Let us call this parameter ρ. In every repetition

the proposal distribution q(Mt+1|Mt) is the same. With probability ω we switch a

random edge inside E ′
i and with probability 1− ω we change a random edge inside E ′′

i .

Then the transition is accepted with probability

a(Mt, Mt+1) = min

{
1,

q(Mt+1|Mt)P (Mt+1|D)

q(Mt|Mt+1)P (Mt|D)

}
.

We see that proposal probabilities cancel out because for both directions they are the

same. We have to switch the same edge to go backwards and the probability of doing

this change is the same for both cases. So the acceptance probability simplifies

a(Mt, Mt+1) = min

{
1,

P (Mt+1|D)

P (Mt|D)

}
.

After doing Metropolis-Hastings steps for ρ times inside one relevant edges set we move

to the next one and we repeat the same procedure.

Although it seems that this way of travelling the model space should assure faster

convergence as described in the previous section, the problem arises when we want to

prove that the Markov chain based on this algorithm converges to the desired limit

distribution at all!.

23

One way of looking at the algorithm presented above, is to treat it as a ’block Gibbs

sampling’ indeed. When the parameter ρ is big enough, then we can see all of the

steps performed by the Metropolis-Hastings inside the particular relevant edges set Ei

as a separate Markov chain simulation. However its limit distribution will be not the

desired posterior distribution for the models but the full conditional conditioned on

the remaining edges, denoted by ε̄i, and the data. The longer we sample inside the

particular relevant edges set, the more confidence we have that the last sample is truly

representative as a sample from the full conditional.

εi ∼ P (Ei|ε̄i, D).

The first disadvantage of this approach is that we have no clue how big the parameter

ρ should be. We do not monitor the convergence of the sub-chain inside the relevant

edges set. Taking care of this issue could cost us a lot of computational time and make

our algorithm unattractive.

The second and more important issue concerns the fact, that in this algorithm the

components that are considered to sample depend on the state that we are in during

the simulation. For each model we sample only one relevant edges set and it is clear,

that these sets depend on the structure of the model.

As described in Gilks, Richardson and Spiegelhalter (1996), chapter 1, it is allowed

for the Metropolis-Hastings algorithm to choose a component to sample depending on

the current state but in this situation the acceptance probability should be modified.

Let us denote the distribution of the components to sample when being in state M

as sM(I) and the proposal distribution for component I as qI(Mt+1|Mt). Then the

acceptance probability becomes

a(Mt, Mt+1) = min

{
sMt+1(I)qI(Mt+1|Mt)P (Mt+1|D)

sMt(I)qI(Mt|Mt+1)P (Mt|D)

}
.

If we see our algorithm as a ’block Gibbs sampling’ then it is clear that the proposal

distribution for the component Ei is approximately the full conditional εi ∼ P (Ei|ε̄i, D)

and it is always accepted. This fact, together with the reasoning presented above,

suggests that our algorithm does not converge to the posterior model distribution. To

check this out, we tested two algorithms on a very simple example. The first one was

the original Gibbs sampler which sample every edge in the model in some fixed order.

The second one was the algorithm presented above with the parameter ρ chosen as 15

and ω as 0.9. We will call it a Markov Blanket algorithm. We tested these algorithms on

24

a simple 3-nodes network. The data consisted of 20 observations produced on the basis

of the true network. Such a small application, where the number of possible models is

232
= 512, gives us some advantages. The convergence to the limit distribution is really

fast and can be achieved in no more than a few hundreds of iterations. Moreover, we

can compute the empirical posterior distribution for all the models and compare the

results between two algorithms. The empirical posterior distribution is just the number

of times we visited each model divided by the length of the simulation.

Pe(M |D) =
1

T

T∑
t=1

I(Mt = M).

To check if these algorithms had converged, we used the Chi-square test, which is de-

scribed in details in Chapter 5. For each of these algorithms we made 3 independent

simulations and compared them together. It turned out that the algorithms had con-

verged immediately. For each algorithms, the hypothesis that 3 independent runs of

length 3000 give the same empirical posterior distribution for the models, was accepted

with p-value equals 1 as presented below.

0 1000 2000 3000
0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000
0

0.2

0.4

0.6

0.8

1

Figure 4.2: P-values for the Chi-square test for the hypothesis that 3 independent
empirical posterior distributions are identically distributed. The Gibbs sampler on the
top and Markov Blanket algorithm at the bottom.

25

Such a small amount of nodes in a network, and thus only 512 distinct models,

allows us to draw the empirical posterior distribution for each of these algorithms in a

details.

0

0.02

0.04

0.06

0.08

0.1

0.12

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Figure 4.3: The empirical posterior models distributions. The Gibbs sampler on the
top and Markov Blanket algorithm at the bottom.

We see that shapes of these distributions are similar but not the same. Again, we

used the Chi-square test, described in Chapter 5, to test if all of these 6 simulations

gave the same empirical distributions. It turned out that the difference was significant.

P-value obtained by the test was extremely low as presented below.

0 1000 2000 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 4.4: P-values for the Chi-square test for the hypothesis that all 6 empirical
posterior distributions are identically distributed. Three of them are produced by Gibbs
sampler and another three by Markov Blanket algorithm.

The conclusion is that the algorithm is wrong. It produces wrong results. For the

’block Gibbs sampler’, if we move from the model M
′
to M

′′
by sampling edges inside

Ei using the full conditional P (Ei|ε̄i, D), it can be the case that we can do the same

move by sampling another relevant edges set Ej. Probably it will be also the case that

26

in the new model M
′′

the relevant edges set Ei will be different than in the model

M
′
. This implies that the full conditional that we could use for going back is also

different. All of these issues should be taken into consideration when computing the

acceptance probability for the move in which should appear the probability of choosing

particular relevant edges set and probability of going to next or previous state with use

of appropriate full conditional. But the problem is that we do not want to compute

these full conditionals because they can be really complicated if the relevant edges set

is big. We obtain one sample from one of the full conditionals by the sub-simulation

inside this set. We cannot repeat this procedure to obtain the probabilities for other full

conditionals. So unfortunately, if we look at this algorithm as a ’block Gibbs sampler’,

there is no easy way to correct it.

4.1.1 New algorithm

We can use the idea of Markov Blanket in the following way. First we get rid of the

parameter ρ by setting this value to 1. So we sample inside the relevant edges set only

once and then we skip to the next set. Every time we choose which relevant edges set

Ei will be considered with probability 1
n
. Then, as before we choose from which part

of the relevant edges set, E ′
i or E ′′

i , the edge will be chosen with use of the parameter

ω. Next we choose one edge Ek from the selected part of the relevant edges set in

the uniform fashion. The new state is generated by changing the edge Ek from 1 to

0 or backwards. This is in fact the proposal distribution qk(Mt+1|Mt) which is fully

deterministic. Finally, the move is accepted with the acceptance probability. It consists

of the probability of choosing the edge for both of the models. For the model M this

probability is given by the formula

sM(k) =
1

n

n∑
i=1

[
ω

|E ′
i |

I(Ek ∈ E
′

i) +
1− ω

|E ′′
i |

I(Ek ∈ E
′′

i)

]
.

Then the acceptance probability takes the form

a(Mt, Mt+1) = min

{
1,

sMt+1(k)qk(Mt+1|Mt)P (Mt+1|D)

sMt(k)qk(Mt|Mt+1)P (Mt|D)

}
= min

{
1,

sMt+1(k)P (Mt+1|D)

sMt(k)P (Mt|D)

}
.

We see that the proposal distributions both cancel out because they are both equal 1.

27

Let us present this algorithm with the help of some pseudo-code.

1. for t from 1 to T

2. pick a random vertex i from 1, . . . , n

3. compute E ′
i and E ′′

i ,

4. sample u ∼ U [0, 1],

5. if u < ω then pick an edge Ek from E ′
i ,

6. else pick an edge Ek from E ′′
i ,

7. end if,

8. generate new model Mt+1 by changing the edge Ek from 1 to 0 or from 0 to 1.

9. compute the acceptance probability a(Mt, Mt+1),

10. sample u ∼ U [0, 1],

11. if not u < a(Mt, Mt+1) then Mt+1 = Mt,

12. end if,

13. end for.

4.1.2 Evaluation

In fact this new algorithm gives us a smart and flexible visitation scheme. It changes

the edges in more dense regions more often and therefore should converge faster to the

desired limit distribution. The edges that are more crucial for the graph, because they

influence bigger number of other edges, are sampled more often. It was also justified

that the algorithm behave correctly and its limit distribution is in fact the posterior

distribution for the models. However, the important issue is that the computation of

the acceptance probability takes a lot of time because it requires finding the relevant

edges set for each of the vertices. This fact can make the algorithm run slower and thus

make it unattractive. However, the gain from using this algorithm seems to be worthy.

Unfortunately, this algorithm was not implemented in this work due to the time

restrictions and there was no possibility to test it on some artificial or true data sets.

However this can be the next step in the later work.

28

Chapter 5

Convergence diagnostics

Besides the fact that Markov chain Monte Carlo techniques are very widely used in

many areas in a really efficient way, there is still a major problem in assessing the

performance of the simulation i.e. gathering the evidence to support the hypothesis that

the chain has reached stationarity. There are several methods to assess MCMC sampler

performance. For comparative review see Cowles and Carlin (1996) and El Adlouni,

Favre and Bobée (2005). However, not every diagnostic method can be used for a DBN

framework. Brooks, Giudici and Philippe (2003) proposed a family of nonparametric

convergence assessment techniques for general use in MCMC which are also applicable

to graphical model selection problem. These methods are based on the comparison of

several replications of Markov chains in terms of distance measures due to the fact that

if the chains have reached stationarity the distances between these replications should

be small.

We will focus on one of the techniques and use it to our DBN framework. It is based

on the Chi-squared test for the homogeneity of subpopulations taken from different

replications of the chain. As a subpopulation we mean a set of sampled models in each

of the replications of the chain. Let us assume that we have J different runs of the

MCMC algorithm and that each replication has T sampled models.

We will use the model representation as a binary matrix n × n (see Chapter 3 for

more details). So the model space B is the set of all binary matrices with size n× n.

29

5.1 Labelling function L

We introduce a labelling function L which gives every model in a model space a label

which is identified with a natural number.

L : B 7→ {l1, . . . , lL} ⊂ N.

The reason for using the labelling function is that it allows us to merge more models

into a group of models having the same label. We treat this group as a new single

state. It is advisable due to the size of the model space. For networks with n nodes

the number of possible models is the size of 2n2
. For example for a 25 node network

this number grows to the size in the order of 10188. However usually MCMC simulation

includes ’only’ about 105, 106 iterations so we see that most of the models will never

be visited, but we only travel a really small part of the model space. Moreover, if we

want to use the Chi-squared test for the homogeneity of subpopulations taken from

few independent MCMC runs, we can be almost sure that, for such a big networks,

probability that independent runs visited the same models is almost zero due to the

huge number of possible models in relation to the simulation length. So by introducing

the labelling function we reduce the size of the state space.

The second reason for using the labelling function will be discussed in more details

in a subsequent section. It deals with the Chi-squared test and the fact that for this test

to work efficiently it is advisable that the expected number of visits in the particular

state is sufficiently big. We will come back to this later.

We will show now that if we look at the labels, instead of the models, a new Markov

chain constructed on the basis of the labels still has desired property of convergence to

the limit distribution πL which is naturally defined on the label space.

πL(l) =
∑

M∈M:L(M)=l

π(M).

Where π denotes the limit distribution for the original Markov chain. To define the

transition probabilities for the new Markov chain we need to take a closer look at the

following problem. Let us consider that we want to find the transition probability

pL(li, lj) of going from label li to lj. But being in some state l means, for the original

Markov chain, that we are in one of the states M such that L(M) = l. However, we

do not know exactly in which one. So in fact moving from the label li to the label lj

is a step from one group of models to the other. To define pL(li, lj) with use of the

30

transition probabilities p from the original Markov chain, we need to know what is the

probability that we are in a particular state M , which has label l, given that we are

in a group of models having label l. We denote this probability by P (M |l). Using the

definition of conditional probability we get the following formula

P (M |l) = P (original Markov chain is in M |new Markov chain is in l)

=
P (original Markov chain is in M and new Markov chain is in l)

P (new Markov chain is in l)

=
P (original Markov chain is in M)

P (original Markov chain is in some state having label l)
.

We can express the probability that the original Markov chain is in state M in terms

of its limit distribution π. The same holds for the probability of being in some state

having label l. So we get the following

P (M |l) =
π(M)∑

M ′∈M:L(M ′)=l

π(M
′
)
.

To make a move to a state l in a new Markov chain we need to make a step to any

state M in the original chain, such that L(M) = l. So now we get to the formula for

the transition probability in the new Markov chain

pL(li, lj) =
∑

M ′∈M:L(M ′)=li

P (M
′|li)

∑
M ′′∈M:L(M ′′)=lj

p(M
′
, M

′′
).

Preposition 1 Suppose we have a Markov chain defined on the finite model space M
with transition probabilities p. Suppose that its invariant distribution is π. Then for

any labelling function L : M 7→ {l1, . . . , lL} ⊂ N a new Markov chain defined on the

label set {l1, . . . , lL}, with transitions probabilities pL defined as above, has its invariant

distribution πL.

Proof. We can treat any labelling function as a process in which we merge groups

of states having the same label into a new states in the new Markov chain. By induction

it is sufficient to show that the Preposition 1 holds for a specific function L such that

it gives every model the unique label except of the two models, which get the same

label. So in fact it corresponds to a merger of two states into a new one and leaving

the rest the same. By induction we can do every possible merger and thus we consider

every possible labelling function. So let us assume that we have a labelling function

31

L : {M1, . . . ,Mm, Mm+1, Mm+2} 7→ {0, . . . ,m} such that

L(Mi) =

{
i for i ≤ m

0 for i = m + 1, m + 2
.

We have that

πL(i) =

{
π(Mi) for i = 1, . . . ,m

π(Mm+1) + π(Mm+2) for i = 0
.

And the transition probabilities are as follows

pL(i, j) = p(Mi, Mj),

pL(i, 0) = p(Mi, Mm+1) + p(Mi, Mm+2),

pL(0, j) = P (Mm+1|0)p(Mm+1, Mj) + P (Mm+2|0)p(Mm+2, Mj),

pL(0, 0) = P (Mm+1|0)p(Mm+1, Mm+1) + P (Mm+2|0)p(Mm+2, Mm+1)

+ P (Mm+1|0)p(Mm+1, Mm+2) + P (Mm+2|0)p(Mm+2, Mm+2),

for i = 1, . . . ,m and j = 1, . . . ,m. For this labelling function we have also that

P (Mm+1|0) =
π(Mm+1)

π(Mm+1) + π(Mm+2)
,

P (Mm+2|0) =
π(Mm+2)

π(Mm+1) + π(Mm+2)
.

Now we have that for i = 1, . . . ,m

πL(i) = π(Mi)

=
m+2∑
j=1

π(Mj)p(Mj, Mi)

=
m∑

j=1

π(Mj)p(Mj, Mi)

+ π(Mm+1)p(Mm+1, Mi) + π(Mm+2)p(Mm+2, Mi)

=
m∑

j=1

πL(j)pL(j, i)

+ [π(Mm+1) + π(Mm+2)]
π(Mm+1)

π(Mm+1) + π(Mm+2)
p(Mm+1, Mi)

32

+ [π(Mm+1) + π(Mm+2)]
π(Mm+2)

π(Mm+1) + π(Mm+2)
p(Mm+2, Mi)

=
m∑

j=1

πL(j)pL(j, i)

+ πL(0) [P (Mm+1|0)p(Mm+1, Mj) + P (Mm+2|0)p(Mm+2, Mj)]

=
m∑

j=0

πL(j)pL(j, i).

And in the same way

πL(0) = π(Mm+1) + π(Mm+2)

=
m+2∑
j=1

π(Mj) [p(Mj, Mm+1) + p(Mj, Mm+2)]

=
m∑

j=1

π(Mj) [p(Mj, Mm+1) + p(Mj, Mm+2)]

+ π(Mm+1) [p(Mj, Mm+1) + p(Mj, Mm+2)]

+ π(Mm+2) [p(Mj, Mm+1) + p(Mj, Mm+2)]

=
m∑

j=1

πL(j)pL(j, 0)

+ πL(0)P (Mm+1|0) [p(Mj, Mm+1) + p(Mj, Mm+2)]

+ πL(0)P (Mm+2|0) [p(Mj, Mm+1) + p(Mj, Mm+2)]

=
m∑

j=0

πL(j)pL(j, 0).

So πL is the invariant distribution for the new Markov chain. �

So it is true that the invariant distribution of the new Markov chain is πL. It is

also clear that the new Markov chain has also desired property of converging to this

invariant distribution due to the convergence of the original Markov chain to π.

33

After running the MCMC simulation we can apply many labelling functions to the

same output. It can turn out that one Markov chain based on the particular function

L1 has converged and the other based on function L2 not. As an example for labelling

function we can take the number of present edges in the model.

L(B) =
n∑

i,j=1

Bij.

This is a very popular way of monitoring convergence in graphical selection problem.

It gives some information on the complexity of the model. However, usually the test

for assessing convergence was based on a roughly look at the graph, without any math-

ematical background. Brooks, Giudici and Philippe (2003) also considered the number

of edges as a feature that one can monitor during the simulation but they proposed

additional statistical Chi-squared test. We will present this test in the subsequent

section.

Usually after running a simulation, due to the complexity of the model, we do not

look at the whole structure, but we ask about a particular feature of the model. It can

be the presence of a particular edge from node Xi to Xj. The result is the empirical

probability of this feature given by the formula

1

T

T∑
t=1

Bt
ij.

Where Bt is the binary n× n matrix for the t’th model in the simulation. But we can

achieve the same result by taking the labelling function L such that

L(B) = Bij.

So we merge the states of the original Markov chain to construct a new two-state Markov

chain. It can be the case that, however the original Markov chain has not converged,

the new Markov chain is close to the stationarity. Using the Chi-squared test we could

conclude that several independent runs of the new Markov chain give approximately

the same posterior distribution and thus we cannot reject the hypothesis that the new

Markov chain has converged. In this case we can have confidence that we really found

the posterior probability of the presence of this particular edge.

34

The next example for the labelling function can be derived from genetics. Some

problems in genetics concerns finding dependencies between a big number of genes that

we investigate. But it can be the case that specialists have some knowledge of the genes

i.e. they can expect that one or more of these genes are regulators which means that

they behave independently but they influence many other genes. So in the network,

that we are trying to find, there would be rather only a few or no edges starting in

other nodes and ending at this particular node but we would have many edges starting

in this particular node and ending somewhere else. So the natural question is which

genes are influenced by our regulator, say node Xi. To answer this question we can use

the labelling function L such that

L(B) =
n∑

j=1

Bij2
j−1.

This function gives the same label to all the models that have the same structure on

the edges which come out from the node Xi. Additionally every possible configuration

of this structure has its unique label.

The similar method can be applied to find by which nodes a particular node Xi is

influenced. In other words, we are only interested in edges that end up in this node.

So the labelling function will be like this

L(B) =
n∑

j=1

Bji2
j−1.

Another advantage of the labelling function is that it can be of any form. It is up

to us to decide of its look. By using many different functions we can cope with many

different problems. Moreover, we do not have to compute new transition probabilities

for the new chain because we apply the labelling function after running the original

MCMC simulation. The fact that we start with the original Markov chain assures us

that we really work on the posterior model probabilities and thus the posterior feature

probabilities.

5.2 Thinning parameter

To perform the Chi-squared test we need to satisfy the condition that the observations

generated by the MCMC sampler are independent. The labels that we observe are

generated by the Markov chain so they are dependent by definition. However, we

35

can solve this problem by using the thinning parameter λ. We do not take adjoining

simulation steps but only every λ’th ones. We will briefly explain how this can be done

below. For more details see Brooks, Giudici and Philippe (2003).

The Markov chain used for the DBN framework has a finite state space. So when

the chain is ergodic then it is automatically uniformly ergodic. For more details about

this topic see Jones (2004) and Robert and Casella (2002). The uniform ergodicity

means that the distance between t’th step transition density and the limit density of

the chain is bounded above by Cβt where C is some constant and β is a convergence

rate. So if we can find index t, such that βt ' 0.01 then after t iterations we are 100

times closer to the limit distribution than at the beginning of the simulation. On the

other hand we can say that the dependency between two iterations which are t steps

apart is 100 times smaller than for the two consecutive steps. So if we are satisfied that

an error level is the size of 0.01 and we have some approximation of the convergence

rate β then it would seem sensible to take the thinning parameter

λ =
log(0.01)

log(β)
.

However, taking the thinning parameter λ bigger reduces the dependency between

iterations, we should remember that we cannot take this parameter as large as possible

because this has negative consequences on the asymptotic approximation of the Chi-

squared test, described below, as well as on the output of the algorithm and thus the

empirical probabilities of the considered labels.

The approximation of the convergence rate can be achieved by investigation of the

transition probabilities πL(i, j) and a whole transition matrix. We can approximate

these probabilities with help of the simulation output in the following way

πL(i, j) =
Nij∑

j

Nij

.

Where Nij denotes a number of times that the transition from label i to j was observed.

If we have computed the approximate transition matrix then we can find its second

largest eigenvalue. The first eigenvalue corresponds to the limit distribution and equals

1. The second one describes the speed with which the other directions in the model

space are vanishing. So it seems like a good approximation of the convergence rate β.

36

5.3 Chi-squared convergence assessment

The Chi-squared test to assess convergence is based on the comparison between J

different, independent replications of the Markov chain Monte Carlo. We point out

that we do not work on the particular models but, by applying the labelling function

L : B 7→ {l1, . . . , lL} to the sampled models, we look at their labels. For each replication

we count the number of times we have sampled the particular label l

Nj,l =
T∑

t=1

I(L(Bj,t) = l).

Where Bj,t is the t’th model in the j’th replication. For the convenience we assume that

the length of each simulation after applying the thinning parameter λ, which means

looking only at every λ’th iteration, is T . We are working on the thinned results from

the simulation, so we can treat consecutive iterations as approximately independent.

In fact Bj,t denotes not t’th but λt’th model in the j’th replication.

The null hypothesis for our test is that all of the replications have reached station-

arity. If this is true than we get a natural estimator for the expected counts of the label

l as

N̂l =

∑J
j=1 Nj,l

J
.

The test is based upon the following statistics

χ2 =
L∑

i=1

J∑
j=1

(Nj,li − N̂li)
2

N̂li

Under the stationarity hypothesis χ2 is asymptotically distributed as a Chi-squared

variate with J(L− 1) degrees of freedom.

As described by Agresti (1990) the validity of the asymptotic approximation of the

Chi-squared test depends on the expected counts N̂l. It is advisable to keep these counts

above a value of about 5. But another advantage of the idea of the labelling function

is that we can just modify the labelling function. We merge few labels which have

poor expected counts into common one which satisfy the required condition. The new

Markov chain still has desired property of convergence to the proper limit distribution.

It reduces the informativeness of the new chain but increases the validity of the Chi-

squared test.

37

In the literature, see Raftery and Lewis (1992), we can find the idea of decomposing

a continuous Markov chain into a two state sub-Markov chain. The convergence rate

of the new chain is used as an underestimation of the convergence rate of the original

chain. However, the idea of the labelling function is somewhat similar, we do not

treat the convergence rate of the new Markov chain as before but use it itself. The

new Markov chain is interesting in its own right. It describes the problem that we

formulated with use of the labelling function. We can apply many labelling functions

and each of Markov chain constructed on them has its own convergence rate and its

own limit distribution. So we do not look anymore at the original Markov chain but

only at the labels defined by the labelling function.

38

Chapter 6

Conclusions and further work

In the previous chapters we explained the concept of Bayesian Network and its equiva-

lent for the sequenced data, Dynamic Bayesian Network. We showed how the MCMC

simulations can be performed in each of these frameworks. One very interesting ap-

proach was based on the idea of Markov Blanket and our goal was to apply it for the

DBN. Unfortunately, the algorithm which was originally proposed, behaved improper

due to the theoretical misapprehensions. Its limit distribution was not a desired pos-

terior model distribution. We made two suggestions on how one could correct this

algorithm. However, for the first approach there is still a problem to be solved which is

related to the complicated proposal distributions and necessity to compute these distri-

butions quite frequently. The second approach is more clear, easier and looks promising.

Unfortunately we could not implement the new algorithm and see how it works due to

the time restrictions but this is a natural proposition for the further research.

Another aspect of this research is to give some tools to assess convergence in a

graphical model selection problem. The final chapter is devoted to the Chi-squared

test. The idea is to apply this test not to particular models, but, by introducing a

labelling function, to deal with labels that we put on the models. Similar idea was

already presented in the literature, see Brooks, Giudici and Philippe (2003), where

authors investigated the number of edges to assess convergence. Similarity to the idea

of labelling function follows from the fact that the number of edges is one possible

labelling function. However, the labelling function is more general concept. Moreover,

we can use many labelling functions at the same time. By using labelling functions

we lose some details of the simulated models but for applications, where considered

models are big and the complexity of the problem becomes extremely high, this is

inevitable. The idea of labelling function is an attempt to find the compromise between

39

complexity of the problem and informativeness of the output of the simulation. The

further research in this area can be the validation of the idea of labelling functions in

practice on some synthetic data and later on authentic applications.

40

List of Figures

2.1 Example of a Bayesian Network . 4

3.1 Example of a Dynamic Bayesian Network. 12

3.2 Example of the inter graph. 14

3.3 Graph with cycles and loops and corresponding unfolded dynamic struc-

ture. 15

4.1 Example of Markov Blanket for node Xi. 20

4.2 P-values for the Chi-square test for the hypothesis that 3 independent

empirical posterior distributions are identically distributed. The Gibbs

sampler on the top and Markov Blanket algorithm at the bottom. . . . 25

4.3 The empirical posterior models distributions. The Gibbs sampler on the

top and Markov Blanket algorithm at the bottom. 26

4.4 P-values for the Chi-square test for the hypothesis that all 6 empirical

posterior distributions are identically distributed. Three of them are pro-

duced by Gibbs sampler and another three by Markov Blanket algorithm. 26

41

References

A. Agresti (1990). Categorical Data Analysis. Wiley, New York.

S. El Adlouni, A. C. Favre and B. Bobée (2005). Comparison of methodologies

to assess the convergence of Markov chain Monte Carlo methods. Computational

Statistics & Data Analysis 50 (2006), pages 2685 - 2701.

S. P. Brooks, P. Giudici and A. Philippe (2003). Nonparametric Convergence As-

sessment for MCMC Model Selection. Journal of Computational and Graphical

Statistics, volume 12, number 1, pages 1 - 22.

D. M. Chickering (2002a). Optimal structure identification with greedy search. The

Journal of Machine Learning Research, 3, pages 507 - 554.

D. M. Chickering (2002b). Learning equivalence classes of Bayesian-network struc-

tures. The Journal of Machine Learning Research, 2(3), pages 445 - 498.

M. K. Cowles and B. P. Carlin (1996). Markov Chain Monte Carlo Convergence

Diagnostics: A Comparative Review. Journal of the American Statistical Associ-

ation, volume 91, number 434, pages 883-904.

W. R. Gilks, S. Richardson, D. J. Spiegelhalter (1996). Markov Chain

Monte Carlo in practice. Chapman & Hall.

D. Husmeier (2003). Sensitivity and specificity of inferring genetic regulatory inter-

actions from microarray experiments with dynamic Bayesian networks. Bioinfor-

matics, volume 19, number 17, pages 2271 - 2282.

J. Jakubowski and R. Sztencel (2000). Wst ↪ep do teorii prawdopodobieństwa.

Wydawnictwo Script.

G. L. Jones (2004). On the Markov chain central limit theorem. Probability Sur-

veys, volume 1, pages 299 - 320.

42

A. E. Raftery and S. M. Lewis (1992). How Many Iterations in the Gibbs Sam-

pler? Bayesian Statistics 4, Oxford University Press, pages 763 - 774.

C. Riggelsen (2005). MCMC Learning of Bayesian Network Models by Markov Blan-

ket Decomposition. ECML, pages 329 - 340.

C. P. Robert and G. Casella (2002). Monte Carlo statistical methods.

Springer-Verlag, 3rd edition.

T. S. Verma and J. Pearl (1990). Equivalence and synthesis of causal models.

In Proceedings of UAI 6, pages 220 - 227.

43

