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A REMARK ON THE BRYLINSKI CONJECTURE FOR

ORBIFOLDS

LUKASZ BAK AND ANDRZEJ CZARNECKI

Abstract. We present reformulation of Mathieu’s result on representing co-
homology classes of symplectic manifold with symplectically harmonic forms.
We apply it to the case of foliated manifolds with transversally symplectic
structure and to symplectic orbifolds. We obtain in particular that such rep-
resentation is always possible for compact Kähler orbifolds.

1. Introduction

The goal of this short paper is to prove an orbifold version of the Brylinski
conjecture [2]. It concerns the question whether on compact symplectic manifold
every cohomology class admits a symplectically harmonic representative. Brylinski
proved it in some interesting cases, most notably for compact Kähler manifolds,
but in general the conjecture is not true. The first to present the counterexample
was Mathieu (cf. [10]). Moreover, he gave an equivalent condition, in terms of
cohomological properties of the symplectic form, for a symplectic manifold (not
necessarily compact) to satisfy the conjecture. The same question of the existence
of symplectically harmonic representatives can be stated for symplectic orbifolds,
and in particular compact Kähler orbifolds. The conclusion of this paper is the
following

Theorem 1. Brylinski conjecture holds for compact Kähler orbifolds.

The study of homological properties of singular spaces tends to be more compli-
cated than in the nonsingular case. Many properties, which prove very useful in the
smooth setting, such as Poincaré duality or finite dimension of homology groups do
not hold in general. These problems have been addressed in different ways. One
approach is to refine the homology theory in question to fit this singular spaces.
This approach led to definitions of new homologies, like for example Goresky and
MacPherson’s intersection homology and cohomology (cf. [6]). For orbifolds, which
is of interest to us, another method is applicable.

It is well known (cf. [12]) that the space of leaves of a Riemannian foliation of
a compact manifold with compact leaves is an orbifold. In [5] authors proved the
converse, namely that

Theorem 2. Every orbifold can be realized as the space of leaves of a Riemannian
foliation.

Their proof is written for complex orbifolds and transversally holomorphic fo-
liations but it can be adapted to the real case. This construction, despite its
convenience for research of orbifolds, has not been fully exploited. Recently it was
used in [18] to give a simple proof of Hard Lefschetz Theorem for Kähler orbifolds,

1

http://arxiv.org/abs/1001.2435v1
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the fact which will be useful for us. Earlier, few others authors took up the similar
idea of using foliated Riemannian manifolds and their foliated objects to the study
of geometry of the leaf (closure) space (cf. [1, 8, 14]). The construction allows us to
consider “transverse” objects on a foliated manifold rather than the corresponding
objects on an orbifold. Our next step is to reformulate the problem again, this time
using well-known correspondence between “transverse” objects on foliated mani-
folds and “holonomy invariant” objects on the corresponding transverse manifolds.
We will only sketch this correspondence in a scope necessary for this paper. More
general and exhaustive approach can be found for example in [19]. Eventually, we
shall see that Theorem 1 is a corollary of the following

Theorem 3. Let M be a manifold and Γ be a pseudogroup of local diffeomorphisms
of M . Let ω be a Γ-invariant symplectic form on M . Then the following conditions
are equivalent:

(1) every Γ-invariant cohomology class has a harmonic representative;

(2) for each k ∈ {0, 1, . . . , n} the mapping Lk : Hn−k
Γ (M) → Hn+k

Γ (M) is
surjective where L[ξ] = [ω ∧ ξ].

2. Invariant forms

We shall consider a smooth manifold M of dimension dimM = m together with
a pseudogroup of local diffeomorphisms Γ. From the complex of differential forms
Ω∗ (M) we single out Γ-invariant forms, that is ξ ∈ Ω∗ (M) satisfying

∀γ ∈ Γ : ξ|U = γ∗
(

ξ|γ(U)

)

,

where U is the domain of γ. They form a subcomplex (which we shall denote
Ω∗

Γ (M)) with differential d = d |Ω∗

Γ
(M). Homology of this complex is called Γ-

invariant cohomology and denoted H∗
Γ(M). In a similar manner we can define

Γ-invariant multivector fields as those X ∈ X
∗ (M) satisfying

∀γ ∈ Γ : X |γ(U) = γ∗ (X |U) .

Again we shall use notation X
∗
Γ (M). For k < l we have the natural nondegenerate

pairing X
k (M) × Ωl (M) ∋ (X, ξ) 7→ ιXξ ∈ Ωl−k (M). Direct computations show

that this pairing restricts to the pairing X
k
Γ (M) × Ωl

Γ (M) → Ωl−k
Γ (M). Using a

Γ-invariant volume form, we obtain an isomorphism

(1) X
k
Γ (M) ∼= Ωm−k

Γ (M) .

From now on we shall assume that M is of even dimension, m = 2n. A Γ-
invariant symplectic form is just a closed, nondegenerate ω ∈ Ω2

Γ (M). Then the
form ωn is a Γ-invariant volume form and isomorphism (1) follows. On the other
hand, we have an isomorphism XΓ (M) ∋ X 7→ ιXω ∈ Ω1

Γ (M) which extends to
an algebra isomorphism X

∗
Γ (M) ∼= Ω∗

Γ (M). Combining these two we obtain an
operator

⋆ : Ω∗
Γ (M) ∼= X

∗
Γ (M) ∼= Ω2n−∗

Γ (M)

associated with the symplectic structure ω.

Remark. Obviously, operator ⋆ is an isomorphism. Moreover, it satisfies ⋆2 =
idΩ∗

Γ
(M).
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Now consider a codifferential δ given, for ξ ∈ Ωk
Γ (M), by

δξ = (−1)k ⋆ d ⋆ξ.

By the remark above δ2 = 0. The central notion in our further studies will be
the notion of a harmonic Γ-invariant form: a form ξ ∈ Ω∗

Γ (M) such that d ξ = 0
and δξ = 0. These forms constitute a subalgebra of Ω∗

Γ (M) which we shall denote
by Ω∗

Γ,h (M). The proof of Theorem 3 will follow closely Yan’s proof of Mathieu’s

result (cf. [20]). Let us recall Yan’s method. We omit some calculations identical
to those in [20].

We construct a Lie algebra sl(2)-representation on Ω∗
Γ (M). We represent the

usual basis of sl(2) given by

X =

[

0 1
0 0

]

, Y =

[

0 0
1 0

]

, H =

[

1 0
0 −1

]

as operators on Ω∗
Γ (M) (denoted by the same letters) so that the relations [X,Y ] =

H , [H,X ] = 2X and [H,Y ] = −2Y hold. We set

Y  Ωk
Γ (M) ∋ ξ 7→ ω ∧ ξ ∈ Ωk+2

Γ (M) ,

X  Ωk
Γ (M) ∋ ξ 7→ ⋆Y ⋆ ξ ∈ Ωk−2

Γ (M) ,

H  Ωk
Γ (M) ∋ ξ 7→ (n− k)ξ ∈ Ωk

Γ (M) .

Observe that operator L from the statement of Theorem 3 is induced by Y .
Eigenvectors of H from the kernel of X are called primitive. We say that sl(2)-
representation on some vector space V is of finite H-spectrum iff this space splits
into finite sum of eigenspaces of operator H . This is obviously the case for our rep-
resentation. For sl(2)-representations of finite H-spectrum the following properties
hold (cf. [7, 20])

Proposition 4. Let V be a vector space with sl(2)-representation of finite H-
spectrum. Let Vλ be the eigenspace of H of eigenvalue λ and Pλ stand for the set
of primitive elements in the eigenspace Vλ. Then

(1) all eigenvalues of H are integers;
(2) X |Vk

: Vk → Vk+2, Y |Vk
: Vk → Vk−2, k ∈ Z;

(3) Xk|V−k : V−k → Vk and Y k|Vk : Vk → V−k are isomorphisms for each
k ∈ N;

(4) Pk =
{

v ∈ Vk : Y k+1v = 0
}

;
(5) every Vk admits a decomposition into the direct sum Vk = Pk ⊕ ImY |Vk+2

.

Applying the above in our case, we obtain following

Corollary 5. Operator Y k : Ωn−k
Γ (M) → Ωn+k

Γ (M) is an isomorphism.

The next step is to prove that the representation on Ω∗
Γ (M) induces an sl(2)-

representation on the subspace of Γ-invariant harmonic forms Ω∗
Γ,h (M), i.e. that

X , Y and H preserve harmonic forms. This follows from the relations

[Y, d] = [X, δ] = 0, [X, d] = −δ, [Y, δ] = −d, [H, d] = [H, δ] = 0.

Therefore we get

Corollary 6. Operator Y k : Ωn−k
Γ,h (M) → Ωn+k

Γ,h (M) is an isomorphism.
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Proof of Theorem 3. We are now ready to prove implication from (1) to (2) of
Theorem 3. The following diagram

Ωn−k
Γ,h (M)

∼=

Y k

//

��

Ωn+k
Γ,h (M)

��

Hn−k
Γ (M)

Lk

// Hn+k
Γ (N)

with obvious vertical arrows, is clearly commutative. If we assume surjectivity of
vertical arrows, i.e. (1), we obtain surjectivity of lower horizontal arrow. In the
proof of the converse, we will use the following lemma, which is a simple corollary
of the relation δ = −[X, d].

Lemma 7. A form ξ ∈ Ω∗
Γ (M) which is closed and primitive must be harmonic.

We now assume (2) and proceed with the proof of (1) by induction. Each closed
0-form is clearly harmonic. It follows from Lemma 7 that every closed 1-form is
harmonic. Now let k be such that n−k ≥ 2 and (1) holds for every cohomology class

of degree r < n− k. Let now ξ ∈ Ωn−k
Γ (M) be a closed form. It suffices to prove

that ξ is cohomologous to some harmonic form. By (2) there exists a closed form

η ∈ Ωn−k−2
Γ (M) and a form θ ∈ Ωn+k+1

Γ (M) such that ωk+2 ∧ η + d θ = ωk+1 ∧ ξ.

Form η is cohomologous to some harmonic form η̄ ∈ Ωn−k−2
Γ,h (M), so η = η̄ + dλ

for some λ ∈ Ωn−k−3
Γ (M). We know that Y k+1 : Ωn−k−1

Γ (M) → Ωn+k+1
Γ (M) is

surjective so we can pick ζ ∈ Ωn−k−1
Γ (M) satysfying ωk+1 ∧ ζ = θ. Finally, we

obtain

ωk+1 ∧ [ξ − d (ζ + ω ∧ λ)− ω ∧ η̄] = 0.

The form ξ̄ = ξ − d (ζ + ω ∧ λ) is cohomologous to ξ. By (4) of Proposition 4
ξ̄−ω∧ η̄ is primitive, therefore by Lemma 7, it is harmonic. But ω∧ η̄ is harmonic,
and the harmonicity of ξ̄ follows. �

3. Foliations

Let M be a manifold with a regular foliation F of dimension p and even codimen-
sion 2n. For a sufficiently small open set U ⊂ M there is a submersion p : U → R

2n

such that foliation F restricted to U is given by fibers of p. Let {Ui} be an atlas
of M consisting of open sets admitting submersions pi : Ui → R

2n as above. With
this atlas we can associate the transverse manifold N =

∐

pi(Ui) with holonomy
pseudogroup Γ generated by the mappings from the associated Haefliger cocycle
(cf. [11]).

Consider the basic complex Ω∗
B (M,F) consisting of basic forms ξ defined by

condition ιT ξ = LT ξ = 0 for each vector field T tangent to the foliation. The
cohomology of this complex is also called basic and is denoted by H∗

B(M,F). Intu-
itively, basic forms are those which locally are pullbacks of forms from the transverse
manifold. This intuition is justified by the following

Proposition 8. There is a chain isomorphism Ξ : Ω∗
B (M,F)

∼=
→ Ω∗

Γ (N) satisfying

ξ|Ui
= p∗i

(

Ξ(ξ)|pi(Ui)

)

for every ξ ∈ Ω∗
B (M,F). It is, moreover, an algebra homomorphism.
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Fix a transversely symplectic structure on M , that is a basic, closed, nondegen-
erate 2-form ω. By Proposition 8 it induces a Γ-invariant symplectic structure on
N , namely Ξ(ω). Consider the mapping X (M) ∋ X 7→ ιXω ∈ Ω1 (M). To make
it an isomorphisms we shall restrict it to the basic vector fields, defined as follows.
Let D be an arbitrary distribution in TM complementary to TF . The space of
basic vector fields XB (M,F) is given by

XB (M,F) = {X ∈ X (D) : [X,T ] ∈ X (F) , ∀T ∈ X (F)}

where X (F) stands for vector fields tangent to the foliation and X (D) for those in
D. It is now a simple calculation to check that

XB (M,F) ∋ X 7→ ιXω ∈ Ω1
B (M,F)

is a well-defined isomorphism. If we take the subalgebra generated by basic vector
fields in X

∗ (M) and denote it X
∗
B (M,F) then this isomorphism extends to an

isomorphism X
∗
B (M,F) ∼= Ω∗

B (M,F).
On the other hand

X
∗
B (M,F) ∋ X 7→ ιXωn ∈ Ω2n−∗

B (M,F)

is, again by simple calculations, an isomorphism and we obtain the transversally
symplectic star operator

⋆t : Ω∗
B (M,F) ∼= X

∗
B (M,F) ∼= Ω2n−∗

B (M,F) .

Observe that while both composed isomorphisms depend on the choice of the dis-
tribution D, they composition does not. Having the star-operator we proceed as
usual, that is we define a codifferential δtξ = (−1)k ⋆t d ⋆t for ξ ∈ Ωk

B (M,F) and
consider forms ξ for which d ξ = δtξ = 0, namely the harmonic forms.

We shall use the chain isomorphism Ξ to apply Theorem 3 in our case. It is
possible since the following holds:

Lemma 9. The following diagram is commutative

Ω∗
B (M,F)

Ξ

��

⋆t
// Ω2n−∗

B (M,F)

Ξ

��

Ω∗
Γ (N)

⋆
// Ω2n−∗

Γ (N)

It assures that Ξ sets a correspondence between basic harmonic forms on M and
Γ-invariant harmonic forms on N . Now we can apply Theorem 3 to obtain the
following

Theorem 10. The following conditions are equivalent:

(1) every basic cohomology class has a harmonic representative;

(2) for each k ∈ {0, 1, . . . , n} the mapping Lk : Hn−k
B (M,F) → Hn+k

B (M,F)
is surjective.

4. Harmonicity with respect to the metric and symplectic structure

In [13] the author considers the question of existence of harmonic forms when the
operator ⋆ is defined with respect not only to the transversal structure of dimension-
one foliation but also some leafwise structure. To avoid confusion we shall denote
this new operator by ⋆a. This approach seems proper if we want to define har-
monicity in the sense of the whole manifold, not only the transverse structure. We
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shall now reformulate this problem for the foliations of arbitrary dimension. Recall
that M is a manifold with regular foliation F of dimension p and even codimension
2n with transversally symplectic structure ω ∈ Ω2

B (M,F). Assume that leaves of
this foliation are orientable or equivalently that M is orientable. Fix a metric g on
M . Tangent bundle TM splits into direct sum TM = TF ⊕ TF⊥. This splitting
induces a bigradation of the space of forms

Ω∗ (M) =

p+2n
⊕

k=0

Ωk (M) =

p+2n
⊕

k=0

⊕

r,s≥0,r+s=k

Ωr,s (M,F)

where ξ ∈ Ωr,s (M,F) (is of type (r, s)) iff ιX1∧...∧Xr+1
ξ = ιY1∧...∧Ys+1

ξ = 0 for

X1, . . . , Xr+1 ∈ X (F) and Y1, . . . , Ys+1 ∈ X
⊥ (F). Clearly basic k-forms are of

type (0, k).
Orientability of leaves allows us to choose a leafwise volume form χ of type (p, 0)

with respect to g. We obtain the volume form ωn ∧ χ on M , together with an
isomorphism

X
∗ (M) ∋ X 7→ ιX (ωn ∧ χ) ∈ Ωp+2n−∗ (M) .

Like before, we define an isomorphism X (M) → Ω1 (M), denoted ♭ and given by

♭(X) = ιXvω + g(Xh, ·)

for a decomposition X = Xh + Xv ∈ X (F) + X
⊥ (F), and then extend it to

♭ : X
∗ (M) → Ω∗ (M) . The star operator obtained as usual from composition

(2) ⋆a : Ω∗ (M) ∼= X
∗ (M) ∼= Ωp+2n−∗ (M)

depends on the choice of the metric g. We will be interested in the behavior of this
operator restricted to basic forms. Consider the bigradation X

∗,∗ (M) such that
(r + s)-vector field X is of type (r, s) iff ιXξ = 0 for each (r + s)-form ξ of type
other than (r, s). We can now rewrite (2) as

⋆a : Ω∗,∗ (M,F) ∼= X
∗,∗ (M) ∼= Ωp−∗,2n−∗ (M) .

For a basic k-form ξ we obtain that ♭−1(ξ) is of type (0, k) therefore

⋆aξ = ι♭−1(ξ) (ω
n ∧ χ) = ι♭−1(ξ)ω

n ∧ χ = ⋆tξ ∧ χ.

If we now consider codifferential defined for k-forms by δaξ = (−1)k ⋆a d ⋆aξ,
then for a basic k-form we obtain

δaξ = (−1)k ⋆a d ⋆aξ = (−1)k ⋆a d (⋆tξ ∧ χ) = ⋆a
(

(−1)k d ⋆tξ ∧ χ+ ⋆tξ ∧ dχ
)

= ι(−1)k♭−1(d ⋆tξ)∧♭−1(χ) (ω
n ∧ χ) + ι♭−1(⋆tξ)∧♭−1(dχ) (ω

n ∧ χ)(3)

= ι♭−1(χ) (δtξ ∧ χ) + ι♭−1(dχ)

(

⋆2t ξ ∧ χ
)

= (−1)p(k−1)δtξ + ι♭−1(dχ) (ξ ∧ χ)

Observe that with respect to the bigradation Ω∗,∗ (M) differential d splits into
three parts, d = d1,0 +d0,1+d−1,2. In particular dχ = d0,1 χ+ d−1,2 χ, for d1,0 χ
vanishes. The summand d−1,2 χ does not vanish in general and therefore δaξ is
not basic for a basic form χ. We must therefore redefine the codifferential as
δaξ = (−1)k ⋆a d0,1 ⋆aξ. The codifferential is then an adjoint of d0,1 instead of d,
but on basic forms these two operators coincide. Now if we recall that d0,1 χ = κ∧χ
where κ is the mean curvature form for F and denote T = ♭−1(κ) we get

δaξ = (−1)p(k−1) (δtξ + ιT ξ) .
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So for basic forms to be preserved by codifferential we must assume that κ is basic.
Foliations with this property are called tense. Recall the operator

Y : Ω∗
B (M,F) ∋ ξ 7→ ω ∧ ξ ∈ Ω∗

B (M,F) .

From Lemma 9 we get that [Y, δt] = − d. We will compute [Y, δa]ξ for a basic
k-form ξ.

[Y, δa]ξ = Y δaξ − δaY ξ = (−1)p(k−1) ([Y, δt]ξ + Y ιT ξ − ιTY ξ)

= (−1)p(k−1)+1 (ιTω ∧ ξ + d ξ) .

This means that to obtain the invariance of basic forms by Y , we need to as-
sume that ιTω = 0. But then nondegeneracy of ω implies vanishing of the mean
curvature. In this case basic forms harmonic with respect to ⋆a and basic forms
harmonic with respect to ⋆t are the same, because ⋆a = ⋆t. So we can conclude
these considerations with

Theorem 11. For the foliation F with vanishing mean curvature form κ the fol-
lowing conditions are equivalent:

(1) every basic cohomology class has a harmonic representative with respect to
the operator ⋆a;

(2) for each k ∈ {0, 1, . . . , n} the mapping Lk : Hn−k
B (M,F) → Hn+k

B (M,F)
is surjective.

By a well-known technique, we can deform the metric along the leaves to change
the mean curvature form inside its cohomology class. In particular, if we can find
a metric on the manifold M for which the mean curvature form is exact, then
we can find another metric with vanishing mean curvature. Especially, for a tense,
transversally oriented Riemannian foliation on a closed oriented manifold, exactness
of mean curvature form is equivalent to the minimalizability of leaves (cf. [17]). Due
to [4] we can omit the tenseness condition. Recall that we consider foliations with
orientable leaves. We can state the following

Corollary 12. For a transversally symplectic, minimalizable Riemannian foliation
on a closed manifold there exist a metric, for which conditions (1) and (2) of
Theorem 11 are equivalent.

In [9] Masa proves that for a transversally orientable Riemannian foliation on
closed, orientable manifold minimalizability of leaves is equivalent to nontriviality
of highest rank basic cohomology. Applying it to our case, we obtain

Corollary 13. For a transversally symplectic Riemannian foliation of codimension
2n, on a closed manifold, such that H2n

B (M,F) 6= 0 there exist a metric, for which
conditions (1) and (2) of Theorem 11 are equivalent.

5. Orbifolds

The notion of the orbifold is a generalization of the notion of manifold. While
a manifold locally looks like an Euclidean space, an orbifold locally looks like a
quotient space of an Euclidean space under an action of a finite group. This notion
includes manifolds, but also manifolds with boundary and even more, like manifolds
with corners. The first definition of an orbifold was given by Satake in [15] under
the name of V-manifold. Numerous other definitions were given later, among them
was the one given by Thurston in [16] or by Moerdijk and Mrcun in [11]. In this note
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we follow the definitions of Chen and Ruan ([3]) using local uniformizing systems.
We recall them in brief.

An n-dimensional local uniformizing system over some open set U ⊂ M is a
triple (V,G, π) consisting of an open set V ⊂ R

n, a finite group G acting smoothly
and effectively on V and a continous map π : V → U , invariant by the action
of G, inducing a homeomorphism between V/G and U . An open covering {Ui}
of a Hausdorff, second-countable topological space together with a family of local
uniformizing systems {(Vi,Gi, πi)} satisfying some compatibility conditions is called
an orbifold structure on X .

A surjective, continous map p : E → U is a local trivialization of an orbifold
bundle of rank k if there are local uniformizing systems (V,G, π) for U and (V ×
R

k,G, π̃) for E and a smooth map ρ : V ×G → Aut(Rk) that satisfies the following
group condition:

∀x ∈ V, ∀g, h ∈ G : ρ(gx, h)ρ(x, g) = ρ(x, hg),

The action of G on V × R
k is given by g(x, v) = (gx, ρ(x, g)v) and the following

diagram is commutative:

V × R
k //

π̃

��

V

π

��

E
p

// U.

Again, the family of local trivialisations over some open covering of X satisfying
some compatibility conditions form an uniform bundle.

We can consider any orbifold X with an orbifold structure {(Vi,Gi, πi)} over
some open covering U = {Ui}. By passing to a refined covering we can assume that
each Vi is an open subset of Rn. Hence we obtain an uniformizing bundle system of
rank n over Ui by taking (TVi,Gi, π̃i) and ρi(v, g) = dv g. Any two such systems are
equivalent, and so they form an orbifold bundle TX , which plays role of a tangent
bundle. In a similar way we can obtain the cotangent bundle T ∗X and in general
any tensor bundle. We can consider sections of the bundle E, namely the lifts of
the mappings s : X → E which in local uniformizing bundle systems are right
inverse of the natural projection V ×R

k → V . In case of tensor bundles those will

be simply tensor fields on the orbifold X , in particular sections of bundle
∧k

T ∗X
are just k-forms, and the space of such sections we will denote as Ωk (X). Now, the
operation d : Ωk (X) → Ωk+1 (X) which in local uniformizing system (Vi,Gi, πi)

is given by d : Ωk (Vi) → Ωk+1 (Vi) is well-defined and satisfies d2 = 0. This is
how cohomology groups of the orbifold X are constructed. Observe that the wedge
product, which is pointwise, is well-defined.

We can also consider a section of the bundle of positive, symmetric tensors of
type (0, 2) on the orbifoldX . Any such section plays a role of Riemannian metric on
X , and any orbifold X admits such metrics. If we choose a Riemannian metric on
X , we can consider the bundle of orthonormal frames over X . For any uniformizing
system (V,G, π) action of G lifts in natural way to the free action on LV , the bundle
of orthonormal frames over V . The induced action of O(n) on the manifold LV/G
gives rise to a foliation such that corresponding space of leaves has a natural orbifold
structure, isomorphic to X . For details of this construction see [11]. Basic forms
of this foliation are exactly the forms on the orbifold X . In particular if we fix a
symplectic structure on X , that is a nondegenerate, closed 2-form on X , we obtain
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a basic symplectic form on the associated foliated manifold. Other constructions
from Section 2 can be carried out on X as well, and as a result of Theorem 10 we
obtain

Theorem 14. For a symplectic orbifold X of dimension n the following conditions
are equivalent:

(1) every cohomology class has a harmonic representative;
(2) for each k ∈ {0, 1, . . . , n} the mapping Lk : Hn−k(X) → Hn+k(X) is

surjective.

This result may be obtained in a more direct way, by finding some correspondence
of the form considered in Proposition 8. For a fixed orbifold structure {(Vi,Gi, πi)}
on X , such that the associated covering U is closed under intersections, consider

a manifold N =
∐

i Vi. Let s̃ be a lift of s : X →
∧k

T ∗X , that is a k-form. It
corresponds to the form

∑

i

s̃|Vi
∈
⊕

i

Ωk (Vi) = Ωk (N) .

Now from the definitions above we obtain

Proposition 15. The mapping

Ω∗ (X) ∋ s →
∑

i

s̃|Vi
∈ Ωk (N)

is a chain isomorphism onto a subcomplex Ωk
Γ (N) consisting of forms invariant by

pseudogroup Γ generated by injections (Vi,Gi, πi) → (Vj ,Gj , πj) and the action of
each Gi on Vi.

Proposition 15 together with Theorem 3 now imply Theorem 14.

Remark. For compact Kähler orbifolds the Hard Lefschetz Theorem, which implies
(2) in the Theorem 14 was established in [5]. Hence Theorem 1 follows.
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10 LUKASZ BAK AND ANDRZEJ CZARNECKI

[13] H. K. Pak. Transversal harmonic theory for transversally symplectic flows. J. Austral. Math.

Soc., 84:233–245, 2008.
[14] N. Poncin, F. Radoux, and R. Wolak. A first approximation for quantization of singular

spaces. Journal of Geometry and Physics, 59:503–518, 2009.
[15] I. Satake. On a generalization of the notion of manifold. Proc. Nat. Acad. Sci., 42:359–363,

1956.
[16] W. Thurston. The geometry and topology of three-manifolds. http://www.msri.org/publica-

tions/books/gt3m/, 2002.
[17] P. Tondeur. Geometry of Foliations. Birkhäuser, 1997.
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