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Spectral action
for scalar perturbations of Dirac operators.
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Abstract

We investigate the leading terms of the spectral action for odd-dimensional
Riemannian spin manifolds with the Dirac operator perturbed by a scalar
function. We calculate first two Gilkey-de Witt coefficientsand make ex-
plicit calculations for the case ofn-spheres with a completely symmetric
Dirac. In the special case of dimension3, when such perturbation corre-
sponds to the completely antisymmetric torsion we carry outthe noncom-
mutative calculation following Chamseddine and Connes andstudy the case
of SUq(2).
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1 Introduction

In the setup of noncommutative differential geometry developed from Alain Connes’
idea of spectral triples [3] the fundamental ingredient of the construction is based
on the spin geometry and the Dirac operator. Although more general Dirac-type
operators are also admitted, the fundamental theorems [2, 9] give equivalence only
between commutative spectral triples and usual spin geometries.
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Usually, the Dirac operator on spin manifold is taken to be the operator, which
comes from the Levi-Civita connection on the tangent bundle. It appears, how-
ever, that a wide class of generalized operators, which come, for example, from
connections with torsions also satisfies the axioms of spectral triples. Although
in the classical differential geometry this might be irrelevant as we can easily
pass to the language of differential geometry and select only such Diracs which
come from the torsion-free connections, in the pure noncommutative situation this
method is no longer available.
Therefore, the class of Dirac operators with torsion is muchlarger than the classi-
cal Diracs and their perturbation. Classically, if one assumes that torsion is totally
antisymmetric (which has some natural geometric justification) the torsion Dirac
operators appear only for dimension superior than2. Whether this is the case in
the noncommutative situation is not clear. In three dimensions the totally anti-
symmetric torsion tensor has only one component, hence the perturbation of the
Dirac operator is only by a function.
We show, that such perturbations are admissible in every odddimension and cal-
culate the correction to the spectral action in the classical case as well as in the
noncommutative situation (the latter in dimension3, with the example ofSUq(2).
This extends recent calculation of spectral action for compact manifolds with tor-
sion (with and without boundaries) which were carried out in[11, 13], though in
dimesnions higher than3 the scalar perturbation has no clear geometrical mean-
ing.

1.1 Scalar perturbations of spectral triples

Let us begin with the definition of areal spectral triple.

Definition 1.1. Let beA be an algebra,H a Hilbert space andπ a faithful rep-
resentation ofA on H. The geometric data of a real spectral triple is given by
(A, π,H, D, J) whereD is a selfadjoint unbounded operator onH, J is antilin-
ear unitary operator, an integer modulo8 (dimension of the spectral triple) and
the following relations:

• ∀a ∈ A, [D, π(a)] is a bounded operator,

• ∀a, b ∈ A, [J−1π(a)J, π(b)] = 0, (CC)

• JD = ǫDDJ , ǫD = ±1 depending on the dimension of the triple,

• ∀a, b ∈ A, [π(a), [D, π(b)]] = 0,
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• J2 = ǫJ1, ǫJ = ±1 depending on the dimension of the spectral triple,

• if the dimension of the triple is even, then there existsγ = γ†, such that:

γ2 = 1, Dγ = −γD, [γ, π(a)] = 0, Jγ = ǫγγJ,

whereǫγ = ±1 depends also on the dimension of the spectral triple.

In addition to the listed above conditions the spectral triple must satisfy a series
of additional requirements: for their list and meaning, as well as the list of all
signs we refer to the literature [9, 3]. In the case whenA is an algebra of smooth
functions on a manifold we replace the commutator condition(CC) by demanding
thatπ(a)† = J−1π(a)J for everya ∈ A.
One of the earliest results, which motivated the construction of spectral geometry
was the so-called reconstruction theorem (later, under certain conditions general-
ized to equivalence, see [3]), which stated that for a compact spin manifoldM ,
with the algebraA = C∞(M), H being the Hilbert space of square integrable
sections of the spinor bundle,J the implementation of the involution in the Clif-
ford algebra,γ the naturalZ2 grading of the Clifford algebra andD the Dirac
operator associated to the Levi-Civita connection, the data (A,H, D, J, γ) form a
commutative spectral triple.
Now, we have:

Proposition 1.2. With the same data as in the definition above, in the case of odd
KO dimension, all relations are satisfied if we replaceD by:

DΦ = D + Φ + ǫDJΦJ
−1,

whereΦ = π(φ), for a selfadjoint elementφ = φ∗ of the algebraA.

Proof. To verify our claim it suffices to verify the algebraic relations, which de-
pend on the Dirac operator. For the remaining part of the axioms, spectral and
analytic, it suffices to observe thatΦ is a bounded operator and henceDΦ is a
bounded perturbation ofD. First, we calculateJDΦ:

JDΦ = J(D + Φ + ǫDJΦJ
−1) = ǫDDJ + JΦ + ǫJǫDΦJ

−1

= ǫD(D + ǫDJΦJ
−1 + Φ)J.

and then the order one condition:
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[

[DΦ, π(a)], JbJ
−1
]

=
[

[D + Φ + ǫDJΦJ
−1, π(a)], JbJ−1

]

=
[

[Φ, π(a)], JbJ−1
]

= 0,

where we have used thatΦ ∈ A and conjugation byJ maps the elements ofA to
its commutant.

Remark 1.3. Note that in the case of manifolds, whenJ maps elements ofA to
A, the perturbationΦ+ ǫDJΦJ

−1 = Φ(1+ ǫD), and it vanishes identically in the
KO dimension1 and5 modulo8.

2 The spectral action for manifolds withDΦ.

We shall calculate here the leading three coefficients of thespectral action for
scalar perturbations of the Dirac operator on odd-dimensional compact spin man-
ifolds. We do not assume any conditions on the reality structure, hence the pertur-
bation by a real functionΦ is possible in any odd dimension.
ThereforeDΦ = D+Φ,Φ = C∞(M,R). Let us recall the Schrödinger-Lichnerowicz
formula, applied toDΦ:

(DΦ)
2 = D2 +DΦ+ ΦD + Φ2

= ∆+
1

4
R + [D,Φ] + 2ΦD + Φ2.

where∆ is the spinorial Laplacian. In order to calculate the leading term parts
of the spectral action, we use the standard techniques to calculate the heat-kernel
coefficients for the second-order differential operators of the Laplace type over
spin manifolds. We used both the explicit formulas obtainedby Barth [1], as well
as the general results presented by Vassilevich [18].
In our notationd is the dimension of the manifold,n denoted the dimension of
the fibres of the spinor bundle. The result, up to terms, whichare total divergence
(which vanish, and since we consider manifolds without boundary) is:

4



[a1] =(4π)−
d

2 n

(

−
1

12
R + (d− 1)φ2

)

,

[a2] =(4π)−
d

2

n

180

(

5

2
R2 − 4RijR

ij −
7

2
RijklR

ijkl

+ 120(d− 1)(d− 3)φ4 + 60(3− d)Rφ2

+ 120(d− 1)(∇iφ)(∇
iφ)

)

.

(1)

The above result has been obtained earlier (for[a1]) by many authors [14, 10,
5] and also [19, 20] in the case of dimension3, where the scalar perturbation
corresponds to torsion. The[a2] coefficient in dimension3 is again a special case
of Dirac operator with an antisymmetric torsion.
An interesting situation happens in dimension3.

Lemma 2.1. The heat kernel coefficients for scalar perturbation of Dirac in di-
mensiond = 3 read:

[a1] =2(4π)−
3

2

(

−
1

12
R + 2φ2

)

,

[a2] =(4π)−
3

2

8

3
(∇iφ)(∇

iφ).

(2)

Proof. Indeed, observe that many terms vanish in the case ofd = 3. Additionally,
both the Weyl tensor (and so its square) as well as the Gauss-Bonnet integrand
must vanish:

RijklR
ijkl − 2RijR

ij +
1

3
R2 = 0,

RijklR
ijkl − 4RijR

ij +R2 = 0,
(3)

Using it we can see that the terms, which depend only on the Riemann and Ricci
tensors and the scalar curvature add up to zero. Hence only the kinetic term forΦ
remains.

Of course, in the case of three dimensional manifolds the coefficient [a2] will not
be present in the leading terms of the perturbative expansion of the spectral action
with respect to the cut-off parameterΛ. However, when considering, for example,
the spectral action onM × S1 with the product geometry, it will appear as the
scale invariant term.
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2.1 Explicit spectral action for spheres

In the special case of thed-dimensional spheres (stilld being an odd number),
we can independently calculate the perturbative expansionof the spectral action
directly from the spectrum of the Dirac. The method, based onthe Poisson sum-
mation formula, which was first presented in [4] and then usedby [16] to study
cosmological aspects of the spectral action will allow us tohave explicit formulas
for the case ofφ = const.
Let us recall that the spectrum of the equivariant Dirac operator on a unit sphere of
an odd dimensiond is given (λn is the eigenvalue,N(n) denotes the multiplicity):

λ±(n) = ±(
d

2
+ n), N(n) =

2
d−1

2 (n+ d− 1)!

n!(d− 1)!
, n ≥ 0.

When we consider the scalar perturbation ofD by a constantt ∈ R, the spectrum
is, accordingly changed to:

λ±(n) = ±(
d

2
+ n± t), N(n) =

2
d−1

2 (n+ d− 1)!

n!(d− 1)!
, n ≥ 0.

Let us write an explicit formula we have for the spectral action defined by the
cut-off functionf :

SSd(t) =
∑

n≥0

N(n)

(

f

(

n+ d
2
+ t

Λ

)

+ f

(

−n− d
2
+ t

Λ

))

.

Observe that:

−n−
d

2
+ t = (−n− d) +

d

2
+ t,

and that
N(n) = N(−n− d),

asd is odd, sod− 1 is even. Therefore, we we can rewrite it as

SSd(t) =
∑

n∈Z

N(n)f

(

n+ d
2
+ t

Λ

)

.

Observe that the terms forn = −1, . . . ,−d + 1 do not appear as these are zeros
of the functionN counting multiplicities.
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Now, we use the Poisson summation formula to the sum over all integers. Define
g(x) = f(x+ α), α ∈ R. We have:

ĝ(k) =
1

2π

∫

g(x)e−ikx =
1

2π

∫

f(x+ α)e−ikx = f̂(k)eikα.

and

f̂ (p)(k) =
1

2π

∫

(−ix)pf(x)e−ikx =
1

2π

∫

(−i(x+ α))pf(x+ α)e−ikxe−ikα,

wheref̂ (p)(k) denotes(∂k)pf̂(k).
Using now the expansion in powers ofΛ up to terms of ordero(Λ−1):

∑

n∈Z

g
(n

Λ

)

= Λĝ(0) + o(Λ−1),

and for the derivatives:
∑

n∈Z

(−in)kg
(n

Λ

)

= Λk+1ĝ(k)(0) + o(Λ−1),

We can now use the following lemma, in order to calculate the three leading terms
of the perturbative spectral action.

Lemma 2.2. For eacht ∈ R we have:

(n + d− 1)(n+ d− 2) · · · (n+ 1) = (n+
d

2
+ t)d−1 − (d−1)t(n+

d

2
+ t)d−2

+

(

1

2
(d−1)(d−2)t2 −

1

24
d(d−1)(d−2)

)

(n+
d

2
+ t)d−3

+

(

1

24
d(d−1)(d−2)(d−3)t−

1

6
(d−1)(d−2)(d−3)t3

)

(n+
d

2
+ t)d−4

+

(

1

24
(d−1)(d−2)(d−3)(d−4)t4 −

1

48
d(d−1)(d−2)(d−3)(d−4)t2

+
1

5760
d(d−1)(d−2)(d−3)(d−4)(5d+2)

)

(n+
d

2
+ t)d−5 + o(nd−5).

We skip the proof based on explicit calculations.
For an even functionf the terms of the orderΛd+1−2k shall vanish (as the value of
the Fourier transform at0 is just the integral of an odd function overR. Therefore
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the first three nontrivial terms are (up to the overall sign(−1)
d−1

2 , which arises
from the Fourier transform):

SSd(t) = Λdf̂ (d−1)(0)

− Λd−2 (d−1)(d−2)

2

(

t2 −
d

12

)

f̂ (d−3)(0)

+ Λd−4 (d−1)(d−2)(d−3)(d−4)

24

(

t4 −
d

2
t2 +

d(5d+2)

240

)

f̂ (d−5)(0).

(4)

We can easily compare this result with the one obtained previously, which could
be treated as the independent test that the results are correct. Let us recall that for
the unitd-dimensional sphere the following identities are true:

(Rijkl)
2 = 2d(d−1), (Rij)

2 = d(d−1)2, R = d(d−1).

Therefore, using the formula (1) we calculate:

[a1] ∼ (−
1

12
d(d−1) + (d−1)t2) = (d−1)(t2 −

d

12
),

[a2] ∼ (120(d−1)(d−3)t4 − 60d(d−1)(d−3)t2

+
5

2
d(d−1)− 7d(d−1)− 4d(d−1)2)

= 120(d−1)(d−3)

(

t4 −
d

2
t2 +

d(5d+2)

240

)

.

(5)

As we can see it is exactly the result obtained above in (4).

2.2 Noncommutative spectral action

Assume that we have a real spectral triple(A,H, D) with a simple dimension
spectrum. By analogy with the commutative example we propose to call a pertur-
bation of the Dirac operator by a selfadjoint element of the algebra,A ∋ Φ = Φ∗,
a torsion-perturbed Dirac,DΦ = D + Φ + JΦJ−1 (recall thatJD = DJ in di-
mension3). It is clear thatDT is still a good Dirac operator for the real spectral
triple1. We callF = sign(D) and assume that[F, a] ∈ OP−∞ for anya ∈ A.
For simplicity we assume that the kernel ofDΦ is empty (if it is not the case one

1The only possible exception is the axiom of the existence of the Hochschild cycle. However,
this fails also in the case of theusualperturbation of the Dirac by a one-form.
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can correctDφ by a finite rank operator, which is a projection on the kernel,for
details see [8]).
We have:

Proposition 2.3. The coefficients of the full perturbative spectral action ona real
spectral triple(A,H, DΦ) are:

(a)

∫

− |DΦ|
−3 =

∫

− |D|−3.

(b)

∫

− |DΦ|
−2 =

∫

− |D|−2 − 4

∫

− ΦF |D|−3.

(c)

∫

− |DΦ|
−1 =

∫

− |D|−1 − 2

∫

− ΦF |D|−2 + 2

∫

− Φ2|D|−3 + 2

∫

− ΦJΦJ−1|D|−3.

(d) ζDΦ
(0)− ζD(0) = 2

∫

− ΦD−1 −

∫

− Φ(Φ + JΦJ−1)D−2

−

∫

− [D,Φ](Φ + JΦJ−1)D−3 + 2
3

∫

− Φ3D−3 + 2

∫

− Φ2JΦJ−1D−3.

Proof. We use the results obtained in [8]. First, from Proposition 4.9 we directly
obtain (a), then using the proof of Lemma 4.10 (applied to ourperturbation of the
Dirac) gives us (b)-(c). Similarly, Lemma 4.5 [8], when applied to any perturba-
tion of the Dirac operator of order0, sayC, gives:
∫

− ζDC
(0)− ζD(0) = S(C) =

∫

− CD−1 −
1

2

∫

−(CD−1)2 +
1

3

∫

−(CD−1)3.

TakingC = Φ + JΦJ−1 and using that the noncommutative integral is invariant
under conjugation byJ we obtain (d).

It is interesting to see the application of the above calculations in the commutative
case of a three-dimensional manifoldM . ThenΦ = Φ∗ = JΦJ−1 is a function
onM . To see that the spectral action simplifies significantly in this case we first
observe:

Lemma 2.4. LetD be a Dirac operator onM andF = sign(D). Then
∫

− φF |D|−3 = 0,

for any functionφ ∈ C∞(M).
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Proof. Indeed, since we are dealing with pseudodifferential operators (bothf and
F are of order0, D is of order1) we can use the symbols and the relation of
the noncommutative integral with the Wodzicki residue. In fact, when we rewrite
fF |D|−3 asfDD−4 we see that the principal symbol of this expression is scalar
multiple of the symbol ofD (as the leading symbol ofD−4 is scalar). Hence its
Clifford trace vanishes.

Finally, we can show:

Proposition 2.5. The leading terms of the perturbative expansion of the spectral
action for the Dirac operator with torsion on the three-dimensional manifold are:

Λ3 term: ∼ Vol(M)

Λ1 term: ∼
1

2π2

(

−
1

12

∫

M

R + 8

∫

M

Φ2

)

.
(6)

in particular, there are noΛ2 terms and scale-invariant contributions.

Proof. First, observe that using Lemma 2.4 (and extending it slightly) we can at
once say that these terms must vanish:

∫

− ΦF |D|−3,

∫

− Φ3F |D−1|.

Furthermore, repeating the arguments of the symbol calculus for the Dirac opera-
tor we see that, on any manifold of dimension3:

∫

− ΦD−1,

∫

− Φ3D−3,

must also vanish.
A bit more work is necessary to show that

∫

− Φ[D,Φ]D−3,

∫

− Φ2D−2,

vanish. Here, one can use explicit calculations by Kastler [6]. Using the ex-
plicit form of the paramatrix forD−2 we see that that its component of order−3,
σ−3(ξ, x) is an odd polynomial inξ. Therefore the last integral in the above list
is 0. For the first one we need to use the trace property of the noncommutative
integral.
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Finally, using the identities:
∫

− |D−3| =
1

π2
Vol(M),

∫

− ψ|D−3| =
1

π2

∫

M

ψ,

∫

− |D−1| = −
1

24π2

∫

M

R(g)

whereψ ∈ C∞(M) andR(g) is the scalar curvature ofM , we obtain the result
(2) (recall thatφ = 1

2
Φ).

3 The quantum sphereSUq(2)

We shall show here that the spectral action terms for the quantum deformation of
the three-sphere are not much different from the undeformedcase. We start with
the undeformed invariant Dirac operator and the spectral triples as described in
[7] (we omit here details of the notation and construction ofspectral geometry).
We take a torsion termΦ being a finite sum of homogeneous polynomials in
a, a∗, b:

Φ =
∑

Cα,β,γa
αbβ(b∗)γ, (7)

whereα ∈ Z (if α < 0 then we take(a∗)|α|) andβ, γ ∈ N. For simplicity we do
not take into account the condition ofJ-reality, thus we restrict ourselves only to
D + Φ. If Φ is selfadjoint then:

Cα,β,γ = qα(γ+β)C−α,γ,β.

Proposition 3.1. The coefficients of the leading terms of the perturbative spectral
action on a real spectral triple with arbitrary torsionΦ overSUq(2) are:

(a)

∫

− |DΦ|
−3 = 2.

(b)

∫

− |DΦ|
−2 = 0.

(c)

∫

− |DΦ|
−1 = −

1

2
+

∫

− Φ2|D|−3.

11



where we have used that for the standard Dirac operator onS3:
∫

− |D|−3 = 2,

∫

− |D|−1 = −
1

2
.

For the form ofΦ as assumed in (7) we have:
∫

− Φ2|D|−3 =
∑

α

|Cα,0,0|
2.

Proof. Using the results for the classical Dirac operator and the noncommutative
expansion from Proposition 2.3 we obtain (a) and the part of (b). The vanishing
of the terms linear inΦ in (b) and (c) is a consequence of Theorem 3.4 [12].
To calculate the noncommutative integral ofΦ2|D|−3 we use the explicit form of
it from [12].

Remark 3.2. Observe that unlike in the classical case the second term of the spec-
tral action has no single minimum as the moduli space of scalar perturbations,
for which it reaches the minimum value is infinite dimensional (as it contains all
functions, which have nontrivial dependence onb or b∗). Therefore, the proposed
spectral condition for the vanishing of torsion makes no sense in the considered
noncommutative geometry ofSUq(2).

Let us turn our attention to the terms, which vanish identically in the classical
situation.

Proposition 3.3. The scale invariant part of the action does not vanish and we
have:

ζDΦ
(0)− ζD(0) =

= −
1

2

∑

α∈Z

∑

l≥0

∑

0≤m,n≤l

Cα,l−n,mCα,l−m,n

(

α
∑

k=0

(−1)kqk(k−1)
[α

k

]

q2

4

1− q2(k+l)

)

.

where
[n

k

]

q2
=

∏n

i=1(1− q2i)
(

∏k

i=1(1− q2i)
)(

∏n−k

i=1 (1− q2i)
) ,

is the quantum binomial.
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Proof. First, let us see that using the same expansion as from the proof of propo-
sition 2.3 the scale invariant terms are:

∫

− ΦD−1 −
1

2

∫

− Φ2D−2 +
1

2

∫

− Φ[D,Φ]D−3 +
1

3

∫

− Φ3D−3.

Let us begin with the first term,
∫

ΦD−1. It is clear that only the terms with(bb∗)n

can possibly contribute. The shortest way to show that the integral vanishes:
∫

−(bb∗)nD−1 = 0,

is to use the property of the following algebra automorphismof SUq(2):

ρ(a) := a, ρ(a∗) := a∗, ρ(b) := b∗, ρ(b∗) := b. (8)

Using the Lemma 5.17 of [12], we see that for any homogeneous polynomial in
a, a∗, b, b∗ the noncommutative integral:

∫

− p(a, a∗, b, b∗)D−k = (−1)k
∫

− p(ρ(a), ρ(a∗), ρ(b), ρ(b∗)D−k,

is (up to sign) invariant with respect toρ. Since in our casek = 1 andρ(bb∗) = bb∗

the integral must vanish. In fact, this proves also that the last term,1
3

∫

Φ3D−3,
vanishes as well.
For the second term of the scale invariant part we again use Lemma 5.14 of [12].
First of all, we calculateΦ2:

Φ2 =
∑

α,β,γ,α′,β′,γ′

Cα,β,γCα′,β′,γ′aαbβ(b∗)γaα
′

bβ
′

(b∗)γ
′

.

Then, the diagonal part is the sum of elements whereα′ = −α andβ+β ′ = γ+γ′:

Φ2 ∼diag
∑

α∈Z

∑

l≥0

∑

0≤m,n≤l

C−α,m,l−nCα,l−m,na
−αbm(b∗)l−naαbl−m(b∗)n

=
∑

α∈Z

∑

l≥0

∑

0≤m,n≤l

Cα,l−n,mCα,l−m,na
αa−α(bb∗)l.

Next, the commutation relations forSUq(2) yields:

a−αaα =(1− q2α−2bb∗)(1− q2α−4bb∗) · · · (1− bb∗)

=
α
∑

k=0

(−1)kqk(k−1)
[α

k

]

q2
(bb∗)k.
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Next, using it and Lemma 5.14 we obtain:
∫

− Φ2D−2 =
∑

α∈Z

∑

l≥0

∑

0≤m,n≤l

Cα,l−n,mCα,l−m,n

(

α
∑

k=0

(−1)kqk(k−1)
[α

k

]

q2

4

1− q2(k+l)

)

.

The next component of the scalar invariant part vanishes:
∫

− [D,Φ]ΦD−3 = 0.

This is an easy consequence of the fact that one can rewrite the above expression
as

∫

− δ(Φ)Φ|D|−3 =
1

2

∫

− δ(Φ2)|D|−3,

and then, using expansion of diagonal terms ofΦ2 we obtain the desired result.

4 Conclusions

We have seen that in the case of three-dimensional manifoldsthe torsion term con-
tributes only to the spectral action through a quadratic term. Therefore, the pos-
tulate to restrict to torsion-free geometries by minimizing the term, which comes
from the noncommutative integral of|D|−n+2, at a fixed metric appeared plausi-
ble. Indeed, it works in the classical commutative case and might be extended to
other torsion-type perturbation of the Dirac operators.
The scalar type perturbations considered in this paper onlyin dimension3 have
the interpretation of torsion and appear to have no direct geometrical meaning in
higher dimensions. We have shown that in the case of lowest possible dimension
for which they are nontrivial the next term spectral action includes coupling of
the scalar field to the scalar curvature and the standard kinetic term, thus making
the field dynamical. In higher dimensions an extra selfinteraction quartic term
appears thus making it possible that in the first three terms one might have a
nonzero vacuum value of the scalar perturbation.
The analysis of the spectral action for the genuine noncommutative example yields
even more interesting result. Clearly, for theSUq(2) it is no longer possible to
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eliminate the torsion by minimizing the|D|−1 term of the spectral action. In addi-
tion, unlike in the classical case the scale invariant termsdo not vanish. It appears
that there is no reason to eliminate the scalar perturbationfrom the considerations
in the setup of noncommutative geometry. Its geometrical meaning and conse-
quences for the model building in physics are still to be discussed.
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