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1 Introduction

Projections (i.e. selfadjoint, idempotent elements) in associative ∗-algebras are main building
blocks of the algebraicK-theory. Commutative C∗-algebras, which by Gelfand-Naimark theorem
are isomorphic to locally compact Hausdorff spaces, do not contain non-trivial projections. To
determine the K0 group of a unital C∗-algebra A one thus has to study the equivalence classes
of projections in the matrix algebra M∞(A). However, when one abandons the assumption of
commutativity of the algebra one may encounter various non-trivial projections in the algebra
itself which, in some cases, are sufficient to fully determine the group K0(A).

The K-theory of noncommutative 2-torus algebra Aθ, known also as irrational rotation alge-
bra, has been thoroughly investigated in the 1980’s. From the works of Pimsner, Voiculescu and
Rieffel (see [14, 15] and references therein) we know that K0(Aθ) ∼= Z⊕ θZ ∼= Z⊕Z. In the case
of noncommutative tori it turns out that projections in the algebra Aθ itself generate the whole
group K0(Aθ) (see Corollary 7.10 in [17]). The K0 class of a projection is uniquely determined
by its algebraic trace, so any two projections with the same trace must be unitarily equivalent
in M∞(Aθ) (see Corollary 2.5 in [15]). On the other hand, it has been already pointed out by
Rieffel in [17] that the structure of projections in Aθ is more robust than it would appear from
the K-theory level.

The purpose of this paper is to look closer into the structure of projections in Aθ itself. Our
main results are summarised in Theorems 2 and 3 in Section 4. The statements are proven by
an explicit construction of the relevant projections. The latter may be useful in the applications,
where explicit formulas for projections are needed.

The uses of noncommutative tori in physics are multifarious. A most natural one concerns
gauge theories developed in terms of finitely generated projective modules, which are noncom-
mutative counterparts of vector bundles [4, 19]. Recently, the projections in the noncommutative
torus algebra Aθ gained more interest in the context of string theory [5, 18]. They turned out
to be extrema of the tachyonic potential providing solitonic field solutions interpreted in terms
of D-branes [1, 10, 11]. Moreover, the projections in Aθ are extensively used in the context of
quantum anomalies [6, 13], knot theory [8] or theoretical engineering [12].

The paper is organised as follows: Below we recall some basic definitions to fix notation and
make the paper self-contained. In the next section we present a set of functional equations
defining an arbitrary projection in Aθ and comment on the adopted method of solving these.
In section 3 we investigate some special solutions - the Power-Rieffel type projections. These
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will serve us firstly to provide an alternative proof of the important Corollary 7.10 form [17].
Secondly, we will use them as a starting point for generalisations to come in section 4. Finally, in
section 5, we make conclusions and discuss some open question that arose during the presented
analysis.

The algebra of noncommutative 2-torus Aθ is a universal C∗-algebra generated by two uni-
taries U , V satisfying the following commutation relation

V U = e2π i θ UV

for some real parameter θ ∈ [0, 1), which we assume to be irrational. We shall work with Aθ - a
pre-C∗-algebra [9, 11, 19] of Aθ which is made up of “smooth” elements of the form

Aθ ⊃ Aθ ∋ a =
∑

(m,n)∈Z2

am,nU
mV n, {am,n} ∈ S(Z

2),

where S(Z2) denotes the space of Schwartz sequences on Z
2. It is a standard result [19] that

K∗(A) ∼= K∗(A) for any A - pre-C∗-algebra dense in a C∗-algebra A.

The elements of Aθ are conveniently obtained from smooth functions on T
2 with help of the

Weyl map [11]. The elements we will be dealing with assume a form (3) so we shall need the
restriction of the Weyl map to S1 ⊂ T

2 = S1×S1. It is an injective algebra homomorphism [11]
given by

ρ : C∞(S1) −→ Aθ,

f(x) =
∑

k∈Z

fk e2π i kx 7−→ f(V ) := ρ(f) =
∑

k∈Z

fk V
k.

We shall also identify S1 ∼= R/Z, since it would be more convenient to work with functions on
R periodic with period 1.

The noncommutative 2-torus algebra is equipped with a canonical trace defined by

τ(a) = a0,0 =

∫ 1

0
a0(x) dx. (1)

We shall use it to determine the K0 class of a projection on the strength of Corollary 2.5 in [15].

Another quantity that may be useful in the study of projections is that of the Chern number
[3]

c1(p) =
1

2πi
τ
(

p (δ1pδ2p− δ2pδ1p)
)

. (2)

The operators δ1, δ2 are basic derivations of Aθ, which act on the generators as follows

δ1U = 2πiU, δ1V = 0, δ2U = 0, δ2V = 2πiV.

The Chern number is related to the index of a Fredholm operator and thus it is always an
integer (see [3, Theorem 11]).

For more details of the noncommutative torus structure the reader may refer to [4, 9, 19].

2 Equations for a general projection in Aθ

Having recalled the basic features of the noncommutative 2-torus algebra we are ready to inves-
tigate the structure of projections in it.
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We start with providing a set of functional equations that define a projection in Aθ. Let us
consider the following element of Aθ

p =
M
∑

n=−M

Unpn(V ), for some M ∈ N. (3)

The conditions for p to be a projection yield a set of functional equations for the functions
pi ∈ C∞(R/Z)

pk(x) = p−k(x+ kθ), for k = −M, . . . ,M, (4)

pk(x) =
M
∑

m,a=−M

pm(x+ aθ)pa(x) δm+a,k, for k = −M, . . . ,M, (5)

0 =
M
∑

m,a=−M

pm(x+ aθ)pa(x) δm+a,k, for k < −M and k > M. (6)

Some of the above equations are redundant and the number of independent ones is 3M + 2. It
can be easily seen by noticing that the equations (4-6) with k < 0 are equivalent to those with
k > 0, because the functions pk with negative indices are actually defined by (4) with k > 0. For
M = 0 formulas (4-6) imply p0(x) ≡ 1 as one may expect. When M = 1 one obtains the familiar
Power-Rieffel equations [16]. However, for M ≥ 2 the equations become more and more involved
and even the existence of a solution is not obvious. In [6] we found four particular solutions to
(4-6) with M = 2, which represent different classes of K0(Aθ). In the next sections we present
a generalisation of the construction given in [6]. Before we start solving the equations (4-6) let
us adopt the following definition.

Definition 2.1. We say a projection in Aθ is of order M if it is of the form (3) and pM 6= 0.

We shall not attempt to provide a general solution to (4-6), but rather present a class of
special solutions. Nevertheless, this class turns out to be large enough to accommodate the
known projections as well as a number of new ones.

We will consider only real-valued functions although (4) requires only p0 to be real. Moreover,
we have already noted that (4) defines the functions pk for k < 0 and it is convenient to get
rid of the functions pk with negative index k in the equations (5) and (6) before solving them.
Our special solutions will be such that each summand on the RHS of (6) is equal to zero
independently. The same should hold for summands of (5) with k > 0 excluding those with
m = 0 or a = 0 – these are combined to form equations

pk(x)
(

p0(x) + p0(x+ kθ)− 1
)

= 0, (7)

which we also require to be satisfied independently. The equations (5) with k < 0 are redundant
and the case k = 0 cannot be split into independent equations. After (4) is substituted into (5)
for k = 0 we obtain

p2M (x−Mθ) + p2M (x) + p2M−1(x− (M − 1)θ) + p2M−1(x)+

+ . . . + p21(x − θ) + p21(x) + p0(x)
(

p0(x) − 1
)

= 0. (8)

In the forthcoming sections we provide a systematic method of constructing projections of
a given trace (1) and order, that will satisfy the equations (4-6) refined with the above-listed
conditions.
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For a general projection of the form (3), the Chern number can be written as

c1(p) =

M
∑

n=1

M−n
∑

k=−M

∫ 1

0
dx

(

n pk+n(x)
[

pn(x+ kθ)p′k(x)− pn(x)p
′
k(x+ nθ)

]

+

+
(

{k, n} ←→ {−k,−n}
)

)

. (9)

Under the assumptions listed above the formula (9) simplifies significantly to yield

c1(p) = 6

∫ 1

0
dx

M
∑

n=1

n pn(x)
2p′0(x).

3 Power-Rieffel type projections

We start with recollecting the construction of the Power-Rieffel projection in a slightly more
general framework. It will serve us as a starting point for generalisations to come in the next
section.

If one sets pk = 0 for all 1 ≤ k ≤ M − 1 then (4-6) reduce to the Power-Rieffel equations
with parameter Mθ

pM (x+Mθ)pM (x) = 0, (10)

p2M (x) + p2M (x−Mθ) + p0(x)(p0(x)− 1) = 0, (11)

pM (x)
(

1− p0(x)− p0(x+Mθ)
)

= 0. (12)

A standard solution to (10-12) is known as a Power-Rieffel type projection [7, 11]

p0(x) =























dM (x), 0 ≤ x ≤ εM

1, εM < x < Mθ

1− dM (x−Mθ), Mθ ≤ x ≤Mθ + εM

0, Mθ + εM < x < 1

, (13)

pM (x) =

{

√

dM (x)(1 − dM (x)), 0 ≤ x ≤ εM

0, εM < x ≤ 1
, (14)

where θ′ = Mθ − ⌊Mθ⌋ and dM is a smooth function with dM (0) = 0, dM (εM ) = 1. The
functions p0 and p1 are depicted in figure 1.

Let us now discuss the properties of these projections. First of all, note that due to the
periodicity of pi functions the equations (10-12) are invariant with respect to the transformation
Mθ →Mθ + z for any z ∈ Z. This means that a Power-Rieffel type projection of order M has
the algebraic trace (1) equal to θ′ = Mθ − ⌊Mθ⌋. Since θ is irrational we have infinitely many
M such that

0 < Mθ − n < 1 ⇐⇒
n

M
< θ <

n+ 1

M
.

Hence, the following proposition (which is also a consequence of the Corollary 7.10 in [17])
holds.

Proposition 1. The algebra Aθ contains projections representing infinitely many different
classes of K0(Aθ).
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1

1

1
2

0
εM θ′ θ′ + εM x

p0(x)

pM(x)

Figure 1. Depiction of functions constituing a Power-Rieffel type projection. We have 0 < εM < θ′,

εM + θ′ < 1.

Another point of view one may adopt for the projection (13-14) is that for any fixed M it
is the standard Power-Rieffel projection [16] in the subalgebra of Aθ generated by UM and V .
This fact may be used to construct an approximation of Aθ in terms of two algebras of matrix
valued functions on S1 [7, 11].

For p[M ] - a Power-Rieffel type projection of order M the formula (2) gives

c1(p
[M ]) = 6M

∫ εM

0
dx dM (x)(1− dM (x))d′M (x) = 6M

(

dM (x)2

2 − dM (x)3

3

) ∣

∣

∣

εM

0
= M.

This is in accordance with the result of [3] stating that if τ(p) = |a− bθ| then c1(p) = ±b.
From the K-theoretic point of view, these projections are sufficient to understand the struc-

ture of the equivalence classes of projective modules over Aθ. On the other hand, the algebra
Aθ contains other interesting projections, which we shall present in next Section.

4 General projections in Aθ

Let us now see what kind of projections one can get by letting functions pk in (3) to be non-
zero for some of the indices k ∈ {1, . . . ,M − 1}. The results are summarised in the following
Theorems.

Theorem 2. A projection of order M may represent the K0(Aθ) class [nθ], as well as the class
[1− nθ], for all n = 1, 2, . . . , 12M(M + 1), provided that 0 < θ < 1/max(n,M).

By [nθ] ∈ K0(Aθ) we denote the K0 class represented by a projection p ∈ Aθ with τ(p) = nθ.

Theorem 3. The equations (4-6) for a projection of order M admit solutions with pk 6= 0 for
every k ∈ {0, . . . ,M} whenever 0 < θ < 1/M .

We shall start with the proof of Theorem 2 by showing how to use the pk functions to increase
or decrease the trace of a Power-Rieffel type projection. Then we present a method of including
the remaining pk functions to the projections constructed in the previous proof without changing
its traces. In this way we will prove Theorem 3. Both proofs are constructive so we are able
to plot some examples of the p0 functions of the relevant projections which, as we shall see,
determine all of the other functions pk for k 6= 0. A brief discussion of the assumptions limiting
the θ parameter may be found in section 5.
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Proof of Theorem 2. Let us start with the case of τ(p) = nθ > Mθ. We shall begin with
a Power-Rieffel type projection as defined in the previous section (13, 14). First note that if
Mθ < 1 then the functions p0 and pM of Power-Rieffel type projection vanish for x ≥Mθ+ εM .
If θ is small enough (i.e. (M + k)θ < 1) then we can “glue” a Power-Rieffel type projection of
trace kθ to the previous one. Namely, let us keep the definition of p0 on [0,Mθ+ εM ] (see (13))
and set

p0(x) =























dk(x), Mθ + εM ≤ x ≤Mθ + εM + εk

1, Mθ + εM + εk < x < (M + k)θ + εM

1− dk(x− kθ), (M + k)θ + εM ≤ x ≤ (M + k)θ + εM + εk

0, (M + k)θ + εM + εk < x < 1

,

pk(x) =

{

√

dk(x)(1− dk(x)), Mθ + εM ≤ x ≤Mθ + εM + εk

0, elsewhere
,

for a smooth function dk with dk(Mθ + εM ) = 0, dk(Mθ + εM + εk) = 1 and a small parameter
εk. The summands of (5) and (6), which we have assumed to be equal to zero independently,
have the form pm(x + aθ)pa(x). This means that all of the non-zero functions pk for k 6= 0
shifted to the interval x ∈ [0, θ] must not intersect. The latter can be fulfilled by restricting the
ε parameters

εM < Mθ, εk < kθ, εM + εk + (M + k)θ < 1. (15)

The imposed restrictions on ε parameters imply that equation (8) reduces to two equations of
the form (11). Namely for x ∈ [0, εM ]∪ [Mθ,Mθ+ εM ] and for x ∈ [Mθ+ εM ,Mθ+ εM + εk]∪
[(M + k)θ + εM , (M + k)θ + εM + εk] we have respectively

p0(x)(1 − p0(x)) = p2M (x) + p2M (x−Mθ),

p0(x)(1 − p0(x)) = p2k(x) + p2k(x− kθ).

These equations are satisfied by construction of pk and pM . On the remaining part of the interval
[0, 1] the equation (8) is trivially satisfied, since both LHS and RHS are equal to 0. By the same
argument, equation (7) remains satisfied, as it is satisfied for both Power-Rieffel type projections
independently. Thus we have obtained a new projection with a trace (M + k)θ. Examples of p0
functions defining such projections are depicted in figure 2.

If the parameter θ is small enough (i.e. nθ < 1) we can continue the process of “gluing”
Power-Rieffel type projections to obtain a projection bearing the trace nθ, with n ≥M . If one
makes use of all of the functions pk with 1 ≤ k ≤ M − 1 to increase the trace, one will end
with a projection bearing the trace (1 + 2 + . . .+M)θ = 1

2M(M + 1)θ. The only thing one has
to take care of are the conditions satisfied by the parameters εk. The restrictions (15) may be
easily generalised to the case of non-vanishing pks functions with s ∈ [1,M − 1]:

εkj < kjθ, for 1 ≤ j ≤ s, (16)

εk1 + . . . + εks + εM + nθ < 1, with n = k1 + . . . + ks +M. (17)

Let us note, that the above construction can be obtained (for nθ < 1) by taking a sum of
s mutually orthogonal Power-Rieffel type projections p[kj ] of orders kj . Indeed, one can easily
check that the functional equations resulting form the orthogonality conditions

(p[ki])2 = (p[ki])∗ = p[ki], p[ki]p[kj] = p[kj ]p[ki] = 0, for 1 ≤ i 6= j ≤ s,

coincide with the ones derived in subsection 2. A similar construction has been presented in [1].
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1

1

1

1

00
εMεM MθMθ (M + k)θ + εM + εk (M + k + l)θ + εM + εk xx

p0(x)p0(x)

Figure 2. Examples of p0 functions for projections with traces (M + k)θ and (M + k + l)θ.

Let us now consider the case of projections of order M and trace nθ with 1 ≤ n < M . Again,
we shall use as a starting point a Power-Rieffel type projection (13, 14), but now we will “cut
out” a part of it. Let us set

p0(x) =























dk(x), εM ≤ x ≤ εM + εk

0, εM + εk < x < kθ + εM

1− dk(x− kθ), kθ + εM ≤ x ≤ kθ + εM + εk

1, kθ + εM + εk < x < Mθ

,

pk(x) =

{

√

dk(x)(1− dk(x)), εM ≤ x ≤ εM + εk

0, elsewhere
,

with a smooth function dk such that dk(εM ) = 1, dk(εM + εk) = 0. The conditions εM < Mθ,
εk < kθ and εM +Mθ < 1 should be satisfied. The situation is now completely analogous to the
case of “glued” projections and the same arguments apply. A projection obtained in this way
bears the trace (M − k)θ for 1 ≤ k ≤M − 1 (see figure 3).

1

1

1

1

00
εM + εk Mθ + εMkθ + εM k1θ + εM (k2 + k1)θ + εM + εk1 (M + l)θ + εM xx

p0(x)p0(x)

Figure 3. Examples of p0 functions for projections of trace (M − k)θ and (M − k1 − k2 + l)θ.

To end the proof of Theorem 2 it remains just to recall that if p is a projection then obviously
1 − p is so. This means that all of the considerations hold for projections of traces (1 − nθ) -
one simply should take 1− p0 instead of p0 and leave pk for k 6= 0 as they are. �

The presented proof provides a great variety of possible projections with a given trace, which
have, in general, different orders. Let us notice that the two procedures of increasing and de-
creasing the trace of a projection of a given order can be applied simultaneously and in arbitrary
sequence (see figure 3). One only has to choose well the parameters εk to have the equations
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(16) satisfied. The equations (16) guarantee that the functions dk do not superpose and the
equations (4-6) remain satisfied. This leads us to an enormous number of projections if the
order N is big enough. Let us now pass on to the most general projections we were able to
construct with the adopted method.

Proof of Theorem 3. In fact one can let all of the pk function to be non-zero by incorporating
to p0 some “bump functions” dk. As a starting point, one should take an arbitrary projection
defined in section 3 or 4. For sake of simplicity let us now denote by k a free index, i.e. we have
pk = 0 in our starting point projection. Now, if one sets p0(x) = dk(x) for x ∈ [δk, δk + εk], with
dk(δk) = dk(δk + εk) = 1 or dk(δk) = dk(δk + εk) = 0 then, to fulfil the equation (7), one has to
set p0(x) = 1− dk(x− kθ) for x ∈ [kθ+ δk, kθ+ δk+ εk]. The function pk should then be defined
as previously by

√

dk(x)(1− dk(x)) for x ∈ [δk, δk + εk] and 0 elsewhere, so that (8) remains
fulfilled. The only task to accomplish is to choose well the parameters εk and δk to avoid the
possible intersection of dk functions. The parameters εk should be such that the equations (16)
remain satisfied, and δk = nθ+εk1+ . . . εks for n, s ∈ Z which depend on the concrete projection
one has chosen as a starting point. �

Examples of p0 functions of the described above projections are shown in figure 4.

1

1

1

1

00
εM εM + εkMθ + εM + εk1 + εk2 + εk3 kθ + εM Mθ + εM xx

p0(x)p0(x)

Figure 4. Examples of p0 functions for projections of traces Mθ and (M − k)θ.

By giving constructive proofs of Theorems 2 and 3 we have exhausted all of the possibilities
of constructing projections in Aθ with the method described in section 2. To end this Section
let us note that the computation of the Chern number of newly constructed projection does not
provide any new information. Indeed, it is straightforward either from direct computations of
the formula (2), either from an application of the results of [3] that if we have a projection p of
trace nθ, then c1(p) = n. In particular, the process of adding “bump” functions described in
the proof of Theorem 3 does not change the Chern class of a projection.

Let us now summarise the obtained results and outline the directions of possible further
investigations.

5 Conclusion and open questions

In the previous section we have presented many projections, which generalise the standard
Power-Rieffel projection. Some represented the same K0(Aθ) class, but had different orders.
The others conversely - had the same order, but different traces. A natural question one can
ask is what are the relations between the presented projections? The answer is provided by
Theorem 8.13 in [17]. It states that if two projections in Aθ represent the same K0(Aθ) class
(hence have the same trace), then, not only they are unitarily equivalent in M∞(Aθ), but they
are actually in the same path component of the set of projections in Aθ itself. This means that
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there exists a homotopy of projections in Aθ for any two of projections in Aθ which have the
same trace. Indeed, if, for instance, one takes dk(t, x) := tdk(x) + (1 − t) instead of dk(x) with
dk(δk) = dk(δk + εk) = 1 in the projections constructed at the end of preceding section, then
one would obtain a projection for all t ∈ [0, 1].

In consequence, from the topological point of view it is sufficient to consider Power-Rieffel type
projection, since they are the generators of the K0(Aθ) group. On the other hand, the richness
of the projection structure may show up in applications. In the proof of the Theorem 2 it has
already been mentioned that the procedure of “gluing” the Power-Rieffel type projections is in
fact equivalent to taking sums of mutually orthogonal projections. However, the “cutting out”
described subsequently does not admit an interpretation in terms of subtracting the projections.
Indeed, it is straightforward to see that if one expresses a projection p of order M and trace
(M − k)θ as p = q − r, where q is a Power-Rieffel type projection of order M , then r would not
be a projection. This shows that the newly found projections are not just linear combinations
of K0 generators.

The puzzling thing about the newly found projections is that their existence in Aθ seems to
depend on the noncommutativity parameter θ as stated in Theorems in section 4. Unfortunately,
the solutions presented there cannot be adapted to the case nθ > 1, as it was done for the Power-
Rieffel type projections in subsection 3. It is so because the translational symmetry of (10-12),
used in the proof of Proposition 1 is absent in general equations (4-6). Note that the discussed
symmetry is also broken whenever we introduce the mentioned “bump functions”. Whether there
is a true difference in the structure of projections in Aθ depending on the noncommutativity
parameter θ or is it just an artefact of our method of solving (4-6) remains an open question.

To conclude the paper, let us comment on the possible applications of the obtained results to
the D-brane scenario in Type II string theories. As mentioned in the Introduction, projections in
Aθ correspond to solitonic field configurations which are identified with D-branes [1, 10, 11]. On
one hand, unitarly equivalent projections yield gauge equivalent field configurations [11, Section
3.1], hence the knowledge of K0(Aθ) alone seems to be sufficient. On the other hand, projections
which cannot be written as linear combinations of K0 generators provide non-perturbative field
configurations. Moreover, the homotopy equivalence of projections may be exploit to study the
soliton dynamics. An example is provided in [11, Section 6.2], where the Boca projection [2],
which is homotopy equivalent to the standard Power-Rieffel projection, is used. The possibility
of adding “bump functions” to a projection as described at the end of section 4 indicates the
existence of an additional degree of freedom of the D-branes. Finally, let us note that the D-
brane point of view suggests that the number of projections in Aθ indeed depends on the value
of the deformation parameter θ (see [10, Section 4] or [1, Section V]).
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