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CUTTING DESCRIPTION OF TRIVIAL 1-COHOMOLOGY.

ANDRZEJ CZARNECKI

We sketch a proof of a following

Theorem 0.0.1. A connected compact manifold M has trivial first cohomology iff

every open and connected set with disconnected boundary cuts M1.

Few remarks are in order.

It is an exercise on separation axioms to show that every cutting domain has a
disconnected boundary, so one can add that to the theorem without harm.

We have published a result for Rn: every domain with disconnected boundary cuts
the ambient manifold2. The proof is valid for simply connected metric spaces,
and the theorem is true for arbitrary simply connected spaces that share a simple
feature: connected open sets are path-connected.

The published theorem has some applications to complex analysis. Suprisingly, as
simple as it is, it was nowhere to be found in literature.

The present theorem should also be valid for more general spaces - but probably
only as general as arbitrary CW -coplexes.

PROOF that trivial first cohomology implies cutting.

Suppose we have a manifold M , open, connected subset U which has disconnected
boundary ∂U = A⊔B. The only nontrivial situation is when M \U has nonempty,
connected interior V and we have

M = U ∪ Ã ∪ V ∪ B̃

with Ã and B̃ - disjoint compact neighborhoods of appropriate sets. Now define a
map to a circle - two intervals (L-eft and R-ight) glued with N -orth and S-outh
pole:

f(Ã) = N

f(B̃) = S

f(x) =
distC(x,B)

distC(x, B̃) + distC(x, Ã)
∈ [0, 1]L x ∈ U

1I.e., M \ U is not connected.
2A. Czarnecki, W. Lubawski, M. Kulczycki, ”On connectivity of boundary and complement

for domains”, Ann. Polon. Math. 103, 2011
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f(x) =
distC(x,A)

distC(x, B̃) + distC(x, Ã)
∈ [0, 1]R x ∈ V

with dist counted in path metric dC : dC(x, y) := inf{lenght of paths joining x and y }.
This is continuous in path metric topology, which is fortunately equivalent to the
standard one. Now take a loop γ joining a point in A with a point in B through
V and going back through U . Now a map f∗ ◦ γ∗ is, by construction, nonzero as
an endomorphism of π1(S

1). But f∗ must be zero, moreover - nullhomotopic, a
contradiction. �

The fact that f must be nullhomotopic follows from:

[M, S1] = [M,K(Z, 1)] = H1(M,Z) = 0

where the isomorphisms are respectively: S
1 is Eilenberg-MacLane space and ho-

motopy characterisation of CW -complex’ cohomology. This allows us to start

PROOF that cutting implies trvival cohomology.

Suppose that M has a nontrivial first cohomology class, which is classified by a
homotopy class of maps from M to S

1. Pick a smooth map in this class, moreover
- as Morse theory is local in nature - pick a Morse function. Observe that we can
choose this function having critical points neither of index 0 nor maximal. Now
choose a regular value v and cut the manifold along the preimage of v, obtaining
essentially a honest Morse function f : M → [0, 1]. Keeping in mind that (reverse)
gradient flow that hits the top level set comes around the bottom, we proceed
as follows. Pick a interval [a, b], consisting only of regular values. The preimage
f−1[a, b] decomposes as a finite disjoint union of connected cylinders over compo-
nents of f−1(a). Now pick any point on the manifold and travel along the (reverse)
gradient flow (remembering that the top and bottom sets are identified). As the
function has no local extrema, most trajectories hit every level set infinitely many
times. As there is only finite number of components, a trajectory must eventually
come twice to some component of f−1[a, b]. This one is precisely a connected open
set with disconnected boundary that does not cut the ambient manifold. �
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