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Abstract

It is shown that the the popular least squares method of option pricing converges

even if the underlying is non-Markovian, the pay-offs are path dependent and with a

very flexible setup for approximation of conditional expectations. The main benefit is

the increase of freedom in creating specific implementations of the method, but depend-

ing on the extent of adopted generality and complexity, the method may become very

demanding computationally. It is argued, however, that in many practical applications

even modest but computationally viable extensions of standard linear regression may

produce satisfactory results from the empirical point of view. This claim is illustrated

with several empirical examples.
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MSC 2010: Primary - 91G20, 91G60, 93E24; Secondary - 60G40, 62J02.

1 Introduction

For over a decade several variants of the so called least-squares method of American option
pricing have been widely used by financial practitioners and at the same time studied by
researchers. The origins of the method can be found in the work of Carriere [5], Tsitsiklis,
Van Roy [22] (see also [21]), Longstaff, Schwartz [16] and Clément, Lamberton, Protter [6].
Basically the method seeks a way of approximating conditional expectations needed in the
valuation process either directly as in [16] and [6], or indirectly through the value function
as in [22]. A modification of the algorithm from [16] was studied in [6] from the point of
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view of the convergence of the method. Subsequently, several papers on this subject have
been published — we will mention just a few of them related to the present article.

Glasserman and Yu [10] investigated in 2004 the convergence of the least-squares like meth-
ods, where — basically — the necessary conditional expectations are approximated by finite
linear combinations of approximating functions. More specifically they look into the prob-
lem of accuracy of estimations when the number of approximating functions and the number
of simulated trajectories increase. They assume that the underlying is a multidimensional
Markov process. The rather pessimistic outcome, from the practical point of view, is that for
polynomials as the approximating functions and for conventional (resp. geometric) Brown-
ian motion as the underlying, the number of required paths may grow exponentially in the
degree (resp. the square of the degree) of the polynomials. Glasserman and Yu remark that
similar property may hold also for more general approximating functions (with the number
of approximating functions replacing the maximal degree).

Also in 2004 Stentoft [20] analyzed and extended the convergence results presented in [6].
In particular he has considered the problem of choosing the optimal number of regressors in
relation to the number of simulated trajectories.

In 2005 Egloff [8] proposed an extension to the original Longstaff-Schwartz [16] as well
as Tsitsiklis – Van Roy ([21], [22]) algorithms by treating the optimal stopping problem
for multidimensional discrete time Markov processes as a generalized statistical learning
problem. His results also improve those from [6]. Egloff comments that despite very good
performance of least-squares algorithms in some practical calculations, precise estimates of
the statistical quantities involved in these procedures may be difficult, leading to some less
impressive performance in other cases.

Zanger [23] proposed in 2009 another extension to the least-squares method by considering
fairly arbitrary subsets of information spaces as the approximating sets. He has also pro-
duced some new and interesting convergence results showing in particular that sometimes
the exponential dependence on the number of time steps can be avoided.

Two features seem to be common to the articles mentioned above. Firstly, the underlying is
assumed to be Markovian. Secondly, the convergence rates of the method, in all its incarna-
tions, are not encouraging from the computational point of view. In the present paper, we
extend the Clément, Lamberton, Protter approach [6] to show that the method converges
even if the underlying is not a Markov process and if the pay-offs are path-dependent, with
a fairly general setting for the regression approximating conditional expectations. Obvi-
ously by giving up the Markov property and aiming at better approximation of conditional
expectation, the potential computational complexity increases considerably. However, the
main advantage of relaxation of the assumptions is the increase in freedom to customize the
method. Moreover, we would like to argue that the least-squares methods should be seen
as a general framework leading to a variety of specific implementations. The main reason
is essentially the fact that the information space for conditional expectation, or in other
words its range, is in many interesting cases infinite dimensional. Inevitably, in these cases
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any approximation of conditional expectations, or value functions depending on conditional
expectations, has to involve significantly restrictive extrinsic assumptions to make practi-
cal computations possible. While general convergence results are necessary to motivate the
overall approach and some computational complexity may be addressed along the lines of
[18], it is most likely that the future developments will evolve closer to simplified time-series
models. It is quite conceivable that an alternative source of realism and numerical efficiency
could exploit the advances in both time-series analysis and frame theory (see e.g. [14]). The
empirical basis for such speculations comes from the fact, that in many real problems even
taking only a few non-linear regressors, and sometimes ignoring lack of the Markov prop-
erty, often leads to satisfactory results from the practical point of view. There seem to be
much anecdotal evidence coming from the financial industry supporting the last statement
and in this paper we provide further corroborating evidence in the form of three empirical
examples.

It should be mentioned that the least squares approach can be also seen as part of the
stochastic mesh framework proposed by Broadie and Glasserman ([3], [4]; see also [15] and
[9]).

The material is organized as follows. The introduction is followed by a short review of Snell
envelopes and consequences of the classic Dobrushin-Minlos theorem, which can lead to
viable numerical approximations of conditional expectations. Then we show that the meth-
ods proposed by Clément, Lamberton and Protter [6] can be extended to cover the case of
American style options with path dependent pay-offs, with a non-Markovian multidimen-
sional underlying and with a very general approach to regression. This is followed by three
computational examples illustrating the viability of the method under rather restrictive as-
sumptions. First we present pricing of a one year Eurodollar American put and call options
with different strike prices. Then we use the least-squares approach to price a 1.5 month
American put option, whose payoff function depends on two market indices, namely DAX
and EUROSTOXX50. Finally, we use the least-squares algorithm to price two 1.5 month
American put options, whose payoff function is based on a single market index under the
assumption that the underlyings can be described by the Heston-Nandi GARCH(1,1) model
[11]. Again, we will use EUROSTOXX50 and DAX indices as the respective underlying
instruments.

2 Snell envelopes and information spaces

It is well known that Snell envelopes are useful in valuation of American put options in
discrete time models (see e.g. [17], p.127). They also furnish the main theoretical ingredient
of the least squares option pricing algorithm which is the main topic of this paper. The
standard use of Snell envelopes can be easily extended to provide pricing algorithms for
more general American style options, that is options that allow execution at any time prior
to maturity, but with a wide variety of pay-off patterns. Before justifying this statement we
will recall without proofs some basic properties of Snell envelopes.
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Let (Ω,F ,P) be a probability space and let (Ft)
T
t=0 be a filtration, where F0 = {∅,Ω} and

FT = F . Assume that an adapted stochastic process (Zt)
T
t=0 is non-negative and integrable.

Let the symbol CT
i denote the set of all stopping times with values in the set {i, i+1, . . . , T}.

A stopping time τ ∈ CT
0 is said to be optimal for (Zt) if

EZτ = sup
ν∈CT

0

EZν .

The Snell envelope of (Zt), is defined as the adapted process

UT = ZT ,

Ut = max (Zt,E[Ut+1|Ft]) , t ∈ {0, . . . , T − 1}.

Since (Zt) is assumed to be integrable, (Ut) is also integrable due to L1-continuity of the
conditional expectation operator. The following theorem collects the standard properties of
Snell envelopes:

Theorem 2.1. Snell envelopes have the following properties:

1. (Ut) is the smallest supermartingale dominating (Zt).

2. Ut = ess sup{E[Zτ |Ft] : τ ∈ CT
t }.

3. Let
τt = min(s ≥ t | Us = Zs).

Then τt ∈ CT
t and

τT = T,

τt = t1{Zt≥E[Ut+1|Ft]} + τt+11{Zt<E[Ut+1|Ft]}, t ∈ {0, . . . , T − 1}.

4. Ut = E[Zτt | Ft].

5. E[Ut+1|Ft] = E[Zτt+1 |Ft].

6. τ0 is optimal for (Zt). In particular, for any optimal stopping time σ,

U0 = E[Zτ0 ] = E[Zσ].

7. τt can also be defined recursively:

τT = T,

τt = t1{Zt≥E[Zτt+1 |Ft]} + τt+11{Zt<E[Zτt+1 |Ft]}, t ∈ {0, . . . , T − 1}.
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8. τ ∈ CT
0 is optimal for (Zt) if and only of

(a) Zτ = Uτ ,

(b) Ut∧τ is a martingale (where t ∧ τ = min(t, τ)).

9. U0 = max(Z0,E[Zτ1 ]).

10. The random variable τ0 is the smallest optimal stopping time.

11. Let Ut = Mt − At be the Doob decomposition of the Snell envelope into a martingale
Mt and a non-decreasing predictable process At starting at 0. If K = {t : At+1 >
0} ⊂ {0, 1, . . . , T − 1}, then

̺ =

{
T if K = ∅,
minK if K 6= ∅,

is the largest optimal stopping time.

(Proofs can be found e.g. in [13].)

In order to clarify our statement from the beginning of this section, consider a discrete time
market model with a risky asset and a bank account. The risky asset price process (St)

T
t=0,

which can be vector-valued, generates a filtration (Ft)
T
t=0. The bank account process (Bt)

T
t=0

is assumed to be adapted to this filtration, positive and non-decreasing, with B0 = 1. Lack
of arbitrage implies the existence of a risk-neutral probability measure Q with respect to
which the discounted price S̄t = St/Bt is a martingale. Consider an American style option
written on this stock. Strictly speaking, because early exercise is restricted to the dates
from our discrete time scale, we are dealing here with a Bermudan style option. On the
other hand the model allows making the time scale arbitrarily fine, so this terminological
distinction is not particularly important. Let Zt denote the intrinsic value process, that is
the value of executing the option at time t. We will assume that Zt = ft(S0, . . . , St), where
ft is a deterministic non-negative Borel function for each t. For instance, for an American
put option ft(s0, . . . , st) = max(K − st, 0), for some constant K > 0 representing the strike
price. Let Z̄t be its discounted version of Zt i.e. Z̄t = Zt/Bt. It is not difficult to notice
that the value of the option at time t− 1 is

Ut−1 = max

(
Zt−1,E

[
Bt−1

Bt
Ut

∣∣∣Ft−1

])
, t = 1, . . . , T,

with UT = ZT . In other words Ūt = Ut/Bt is simply the Snell envelope of Z̄t. Moreover
U0 = Ū0. Any optimal stopping time provides a recipe for exercising the option at the right
moment.

An alternative to the risk-neutral valuation, is to adopt an “actuarial” or “empirical” ap-
proach. Namely, suppose that one can identify a “risk-aware” adapted process Dt such that
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D0 = 1 and the expected value of Ut at time t − 1 is E
[
DtUt

∣∣∣Ft−1

]
, with respect to the

objective probability measure. Then the above conclusion still holds with a new process
Bt = (D0D1 · . . . ·Dt)

−1.

The key element in any numerical implementation of Snell envelopes, is the ability to ap-
proximate the conditional expectation operator. Except for the finite case, one has to deal
with infinite-dimensional spaces of random variables. Some elucidation seems to be in order
here.

Since we will be dealing only with random variables of finite variance, we can rely on the
Hilbert space geometry in addressing the issues of interest (see [19]). A closed subspace
S ⊂ L2(Ω,F ,P) is said to be probabilistic if it contains constants and is closed with respect
to taking the maximum of two of its elements, i.e. if X,Y ∈ S, then X ∨ Y ∈ S. For
any non-empty set X ⊂ L2(Ω,F ,P), its lattice envelope Latt(X) is defined as the smallest
probabilistic subspace of L2(Ω,F ,P) containing X. Obviously, even if X consists of just one
random variable, Latt(X) can be infinite-dimensional. Moreover, if X = {X1, . . . ,Xn} and
Bn denotes the σ-algebra of Borel sets in Rn, then it is not difficult to prove (see e.g. [13])
that

Latt(X) = L2(Ω, σ(X),P) = L2(Ω, (X1, . . . ,Xn)
−1(Bn),P).

The latter will be referred to as the information space generated by X1, . . . ,Xn. Since this
is also the range of the orthogonal projection E[· |X1, . . . ,Xn], it would be desirable from
the numerical standpoint to be able to approximate such projections, with projections onto
smaller finite-dimensional vector spaces using available least-squares algorithms.

To this end one could use the following theorem, which is a slight reformulation of a result
of Dobrushin and Minlos [7].

Theorem 2.2. Let (Ω,F ,P) be a probability space and let α > 0. Let Pn denote the
space of all polynomials of n real variables. If X1, . . . ,Xn are random variables such that
e|Xj | ∈ Lα(Ω,F ,P) for j = 1, . . . , n, then:

(a) P (X1, . . . ,Xn) ∈ Lp(Ω,F ,P) for any polynomial P ∈ Pn and p ∈ [1,∞);

(b) the vector space {P (X1, . . . ,Xn) : P ∈ Pn} is dense in Lp(Ω,F ,P) for every p ∈ [1,∞).

It should be noted that the converse to part (a) is false as shown in the following example.

Example 2.3. Define a probability measure P on the real axis via its density

f(x) =

∑∞
m=1

δ(x−m)
mlnm∑∞

m=1
1

mlnm

,

where δ = 1{0}. If q ≥ 1, then
∞∑

m=1

mq

mlnm
<∞.
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On the other hand
∞∑

m=1

eαm

mlnm
= ∞

for any α > 0. �

If the probability measure P has a bounded support, in Rn, then the assumption of the
Dobrushin-Minlos theorem is trivially satisfied. In fact, in this special case the conclusion of
the theorem follows directly from the Stone-Weierstrass Theorem. It is also easy to see that
if X is Gaussian, then e|X| ∈ L1. However, if X is lognormal, then its moment generating
function does not exist in the interval (0,∞) and hence eα|X| 6∈ Lα for all α > 0.

In concrete applications, the condition e|X| ∈ Lα can sometimes be achieved by changing the
probability distribution of “very large” values of |X|. For instance, this can be accomplished
by truncation of probability distribution or some direct attenuation of the random variable
X. Another possibility is the use of suitable weight functions. In this context the Dubrushin-
Minlos theorem can be used to justify the density part in the construction of several classic
polynomial bases in spaces of square integrable functions, associated with the names of
Jacobi, Gagenbauer, Legendre, Chebyshev, Laguerre and Hermite (see e.g. [13]).

Let V be an information space generated by random variables X1, . . . ,Xn. Suppose that
one can furnish a sequence of Borel functions qm : Rn −→ R, with m ∈ N, such that the set
{qm(X1, . . . ,Xn) : m ∈ N} is linearly dense in V (e.g. with the help of the Dobrushin-Minlos
theorem). Then the conditional expectation operator E[· |X1, . . . ,Xn] is the pointwise limit
of the sequence of projections onto linear spaces V m = {qk(X1, . . . ,Xn) : 1 ≤ k ≤ m} as
mր ∞. This observation leads to an auxiliary concept of admissible projection systems.

Given a discrete time filtration {∅,Ω} = F0 ⊂ F1 ⊂ . . . ⊂ FT ⊂ F in the probability space
(Ω,F ,P), we define an admissible projection system as a family of orthogonal projections

{
Pm
t : L2(Ω,F ,P) −→ L2(Ω,F ,P)

}
t = 1, . . . , T
m ∈ N

with ranges V m
t = Pm

t

(
L2(Ω,F ,P)

)
, such that for all t = 1, . . . , T and m ∈ N we have

V m
t ⊂ V m+1

t

and ⋃

k∈N

V k
t = L2(Ω,Ft,P).

Note that for any such system and for any fixed t, we get pointwise convergence of the
projections Pm

t to E[· | Ft]. However, this is not a norm convergence unless the underlying
sequence of subspaces becomes constant after finitely many steps.
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Suppose that (Zt) is a stochastic process adapted to the filtration (Ft). Let us fix m ∈ N.

Given an admissible projection system we define the stopping times τ
[m]
t by recursion:

τ
[m]
T = T,

τ
[m]
t = t1{Zt≥Pm

t (Z
τ
[m]
t+1

)} + τ
[m]
t+11{Zt<Pm

t (Z
τ
[m]
t+1

)}, t = 1, . . . , T − 1.

Recall, that in our discussion of properties of Snell envelopes we defined a somewhat similar
stopping time:

τT = T,

τt = t1{Zt≥E[Zτt+1 | Ft]} + τt+11{Zt<E[Zτt+1 | Ft]}, t = 1, . . . , T − 1.

The following theorem generalizes a result due to Clément, Lamberton and Protter (see
Theorem 3.1 in [6]):

Theorem 2.4. If (Pm
t ) is an admissible projection system, then

lim
m→∞

E
[
Z
τ
[m]
t

| Ft

]
= E[Zτt | Ft]

for t = 1, . . . , T , where the convergence is in L2. In particular

lim
m→∞

E
[
Z
τ
[m]
t

]
= E[Zτt ]

in L2.

Proof: Despite a much more general setting we have adopted here and slightly different
notation, we can proceed as in [6]. Since the case t = T is obvious, we can use induction on
t. Assume that the formula is true for t+ 1. Let Et[ · ] = E[ · | Ft]. Define five subsets of
Ω as collections of points satisfying the following inequalities:

C1 = {Zt ≥ Pm
t (Z

τ
[m]
t+1

)} , C2 = Ω \ C1,

C3 = { Zt ≥ Et[Zτt+1 ] } , C4 = Ω \ C3,

C5 =
{ ∣∣Zt − Et[Zτt+1 ]

∣∣ ≤
∣∣∣∣Et[Zτt+1 ]− Pm

t (Z
τ
[m]
t+1

)

∣∣∣∣
}
.

Obviously, for t < T we we have the formulas

τ
[m]
t = t1C1 + τ

[m]
t+11C2 ,

τt = t1C3 + τt+11C4 .
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Observe that

Et

[
Z
τ
[m]
t

− Zτt

]
= Et

[
Zt1C1 + Z

τ
[m]
t+1

1C2 − Zt1C3 − Zτt+11C4

]

= Zt(1C1 − 1C3) + Et

[
Z
τ
[m]
t+1

]
1C2 − Et

[
Zτt+1

]
1C4

= Zt(1C1 − 1C3) + Et

[
Z
τ
[m]
t+1

]
1C2 − Et[Zτt+1 ](1C1 + 1C2 − 1C3)

= Et

[
Z
τ
[m]
t+1

− Zτt+1

]
1C2 +

(
Zt − Et

[
Zτt+1

])
(1C1 − 1C3)

= Et

[
Z
τ
[m]
t+1

− Zτt+1

]
1C2 + Lm

t .

The second last term goes to zero by the induction hypothesis and the fact that EtEt+1 = Et.
We need to estimate the last term. To this end note that

|1C1 − 1C3 | ≤ |1C1∩C4 − 1C2∩C3 | ≤ 1C5 ,

because (C1 ∩ C4) ∪ (C2 ∩ C3) ⊂ C5. Hence

Lm
t ≤

∣∣Zt − Et

[
Zτt+1

]∣∣1C5

≤
∣∣∣∣Et[Zτt+1 ]− Pm

t (Z
τ
[m]
t+1

)

∣∣∣∣ , by the definition of C5,

≤
∣∣Et[Zτt+1 ]− Pm

t

(
Et[Zτt+1 ]

)∣∣+
∣∣∣∣P

m
t

(
Et[Zτt+1 ]

)
− Pm

t (Z
τ
[m]
t+1

)

∣∣∣∣

=
∣∣Et[Zτt+1 ]− Pm

t

(
Et[Zτt+1 ]

)∣∣+
∣∣∣∣P

m
t

(
Et[Zτt+1 ]

)
− Pm

t (Et[Zτ
[m]
t+1

])

∣∣∣∣

≤
∣∣Et[Zτt+1 ]− Pm

t

(
Et[Zτt+1 ]

)∣∣+
∣∣∣∣Et

[
Zτt+1 − Z

τ
[m]
t+1

]∣∣∣∣ ,

because of the tower property of projections and the fact that the norm of a projection is
at most one. The last term goes to zero by the induction hypothesis. The second last one
because of the L2 density of the union of ranges of the projection forming the admissible
projection system. �

Obviously the above considerations remain valid for vector valued stochastic processes.

3 The general case of the least squares method of option pric-

ing

In what follows we will denote the set of all real (m × n)-matrices by Rm×n with the
convention that Rm = R1×m. Throughout the section we will use notation and methods
similar to those introduced in [6] but adapted to our less restrictive assumptions.
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Suppose that (Xt)
T
t=0 is a discrete time d-dimensional stochastic process on the probability

space (Ω,F ,P), with X0 being a constant. This process is meant to represent the prices of
the underlying assets for an American style option we wish to valuate.

Let
X = (X1, . . . ,XT ) : Ω −→ Rd×T

and let Ft = σ (X0, . . . ,Xt) = σ (X1, . . . ,Xt) for t = 1, . . . , T . Given a family of Borel
functions

ft : R
d×(t+1) −→ R+, t = 0, . . . , T,

we define
Zt = ft(X0, . . . ,Xt), t = 0, . . . , T.

This sequence represents suitably discounted intrinsic prices of the option we want to con-
sider. Such a general choice of functions ft, expands the potential applicability well beyond
American put options. The aim is to calculate U0, where Ut is the Snell envelope of Zt and
since U0 = max(Z0,E[Zτ1 ]), we basically want to approximate numerically E[Zτ1 ].

We need to chose an admissible projection system for the filtration associated with X. This
is equivalent to choosing for each t ∈ {1, . . . , T} a suitable sequence of Borel functions

qkt : Rd×T −→ R, k ∈ N,

which depend only on the first t column variables, and are such that the sequence {qkt (X)}k∈N
is linearly dense and linearly independent in the space L2(Ω, σ(X1, . . . ,Xt),P). Then, we
can select an increasing sequence of integers (km)m∈N, such that the spaces

V m
t = Lin{qkt (X) : k = 1, . . . , km},

and the orthogonal projections Pm
t : L2(Ω, σ(X),P) −→ V m

t have all the right properties.
The symbol “Lin” denotes the linear envelope of the given set of vectors.

If the stopping times τ [m] are defined as in the previous section, then for some αm
t ∈ Rkm×1

we have

Pm
t

(
Z
τ
[m]
t+1

)
= emt (X)αm

t ,

where the mapping emt is given by the formula

emt : Rd×T ∋ x 7→
(
q1t (x), . . . , q

km
t (x)

)
∈ Rkm.

In view of our assumptions, the Gram matrix of the components of emt (X) (with respect to
the inner product (Y1, Y2) 7→ E[Y1Y2]), that is the matrix

Am
t =

[
E
[
qit(X)qjt (X)

] ]
1≤i,j≤km

∈ Rkm×km,
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is invertible and hence

αm
t = (Am

t )−1




E

[
Z
τ
[m]
t+1

q1t (X)

]

...

E

[
Z
τ
[m]
t+1

qkmt (X)

]



.

Given a number N , the next step it to use Monte-Carlo simulation to generate independent
trajectories

X(n) =
(
X

(n)
1 , . . . ,X

(n)
T

)
∈ Rd×T

of the process X, for n = 1, 2, . . . , N . Each simulation has the fixed starting point X
(n)
0 =

X0 ∈ Rd×1.

Define
Z

(n)
t := ft

(
X

(n)
0 , . . . ,X

(n)
t

)

and let

Ẑt =



Z

(1)
t
...

Z
(N)
t


 ∈ RN×1.

This column vector consists simply of the values at time t of all simulated trajectories of
the process Z.

Define also

V
(m,N)
t = Lin







qkt (X

(1))
...

qkt (X
(N))


 : k = 1, . . . , km





⊂ RN×1

and
P

(m,N)
t = Proj

V
(m,N)
t

: RN×1 −→ RN×1

with respect to the inner product 〈x,y〉
N , where 〈x, y〉 denotes the standard scalar product.

Note that 

emt (X(1))

...

emt (X(N))


 ∈ RN×km

and

V
(m,N)
t = Lin





the columns of



emt (X(1))

...

emt (X(N))








⊂ RN×1.
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If we define the stopping times τ
[m]
t by the formula

τ
[m]
T = T,

τ
[m]
t = t1{Zt≥Pm

t (Z
τ
[m]
t+1

)} + τ
[m]
t+11{Zt<Pm

t (Z
τ
[m]
t+1

)}, t = 1, . . . , T − 1,

then for some αm
t ∈ Rkm×1 we have

Pm
t

(
Z
τ
[m]
t+1

)
= emt (X)αm

t .

Similarly, if we define the approximative stopping times τn,m,N
t by the formula

τn,m,N
T = T,

τn,m,N
t = t1{

Z
(n)
t ≥πn

[
P

(m,N)
t (Ẑ

τ
n,m,N
t+1

)

]} + τn,m,N
t+1 1{

Z
(n)
t <πn

[
P

(m,N)
t (Ẑ

τ
n,m,N
t+1

)

]},

for t = 1, . . . , T − 1,

where

πn : RN×1 ∋




x1
...
xN


 7→ xn ∈ R,

then for some α
(m,N)
t ∈ Rkm×1 we have

P
(m,N)
t







Z
(1)

τ1,m,N
t+1

...

Z
(N)

τN,m,N
t+1





 =



emt (X(1))

...

emt (X(N))


α(m,N)

t .

Let A
(m,N)
t be the (km × km)-Gram matrix associated with the columns of the matrix



emt (X(1))

...

emt (X(N))


 ,

that is

A
(m,N)
t =

1

N



emt (X(1))

...

emt (X(N))




∗ 

emt (X(1))

...

emt (X(N))


 .

This is simply the Gram matrix estimator for the given sample.

12



Then α
(m,N)
t is a solution of the equation

A
(m,N)
t α

(m,N)
t =

1

N



emt (X(1))

...

emt (X(N))




∗



Z
(1)

τ1,m,N
t+1

...

Z
(N)

τN,m,N
t+1


 .

By the Law of Large Numbers A
(m,N)
t

a.s.−→ Am
t as N → ∞, and hence for sufficiently large

N the matrix A
(m,N)
t is invertible (almost surely). In this case

α
(m,N)
t =

1

N

(
A

(m,N)
t

)−1



emt (X(1))

...

emt (X(N))




∗



Z
(1)

τ1,m,N
t+1

...

Z
(N)

τN,m,N
t+1


 .

For convenience we will write

αm =
(
αm
1 , . . . , α

m
T−1

)
, α(m,N) =

(
α
(m,N)
1 , . . . , α

(m,N)
T−1

)
.

Both objects are km × (T − 1)-matrices.

Define
Bt = {(am, z, x) : zt < emt (x)amt } ⊂ Rkm×(T−1) × RT × Rd×T

for t = 1, . . . , T − 1, where am = (am1 , . . . , a
m
T−1), z = (z1, . . . , zT ), and x = (x1, . . . , xT ). By

Bc
t we will denote the complement of Bt. We define an auxiliary function

Ft : R
km×(T−1) × RT × Rd×T −→ R,

by recursion:

FT (a
m, z, x) = zT ,

Ft(a
m, z, x) = zt1Bc

t
+ Ft+1(a

m, z, x)1Bt , t = 1, . . . , T − 1.

Since 1C∩D = 1C1D for any two sets C and D, it is easy to see that

Ft(a
m, z, x) = zt1Bc

t
+

T−1∑

s=t+1

zs1Bt∩...∩Bs−1∩Bc
s
+ zT1Bt∩...∩BT−1

for t = 1, . . . , T − 1. Moreover

Ft(a
m, z, x) is independent of am1 , . . . , a

m
t−1;

Ft(α
m, Z,X) = Z

τ
[m]
t

;

Ft(α
(m,N), Z(n),X(n)) = Z

(n)

τn,m,N
t

.

13



For t = 2, . . . , T define also three other auxiliary functions:

Gt(a
m, z, x) = Ft(a

m, z, x)emt−1(x);

φt(a
m) = E[Ft(a

m, Z,X)];

ψt(a
m) = E[Gt(a

m, Z,X)].

Using this notation one can see that for t = 1, . . . , T − 1:

αm
t = (Am

t )−1ψt+1(α
m); (1)

α
(m,N)
t = (A

(m,N)
t )−1 1

N

N∑

n=1

Gt+1(α
(m,N), Z(n),X(n)). (2)

The following estimate is a higher-dimensional counterpart of Lemma 3.1 in [6].

|Ft(a, z, x) − Ft(ã, z, x)| ≤
T∑

s=t

|zs|
[
T−1∑

s=t

1{|zs−ems (x)ãs|≤|ems (x)|‖ãs−as‖}

]
, (3)

where 1 ≤ t ≤ T − 1, a = (a1, . . . , aT−1) ∈ Rkm×(T−1), ã = (ã1, . . . , ãT−1) ∈ Rkm×(T−1),
z ∈ RT and x ∈ Rd×T .

The above estimate can be easily justified. Let B̃t = {zt < emt (x)ãt}. Note first that

|1Bt − 1B̃t
| = 1Bc

t∩B̃t
+ 1Bt∩B̃c

t

≤ 1{|zt−emt (x)ãt|≤|emt (x)|‖ãt−at‖}.

Moreover

|1A1∩A2 − 1C1∩C2 | = |1A11A2 − 1C11C2 |
= |1A11A2 − 1A11C2 + 1A11C2 − 1C11C2 |
≤ 1A1 |1A2 − 1C2 |+ 1C2 |1A1 − 1C1 |
≤ |1A1 − 1C1 |+ |1A2 − 1C2 |,

for any A1, A2, C1, C2. Consequently

|1Bt∩...∩Bs−1∩Bc
s
− 1B̃t∩...∩B̃s−1∩B̃c

s
| ≤

s−1∑

u=t

|1Bu − 1B̃u
|+ |1Bc

s
− 1B̃c

s
|

=

s∑

u=t

|1Bu − 1B̃u
|,

because |1Bc
s
− 1B̃c

s
| = 1Bc

s∆B̃c
s
= 1Bs∆B̃s

= |1Bu − 1B̃u
|, where ∆ denotes the symmetric

difference of sets. Similarly

|1Bt∩...∩BT−1
− 1B̃t∩...∩B̃T−1

| ≤
T−1∑

u=t

|1Bu − 1B̃u
|,

14



Therefore

|Ft(a, z, x) − Ft(ã, z, x)| =
∣∣∣zt(1Bt − 1B̃t

)

+

T−1∑

s=t+1

zs(1Bt∩...∩Bs−1∩Bc
s
− 1B̃t∩...∩B̃s−1∩B̃c

s
)

+zT (1Bt∩...∩BT−1
− 1B̃t∩...∩B̃T−1

)
∣∣∣

≤
(

T∑

s=t

|zs|
)(

T−1∑

s=t

|1Bs − 1B̃s
|
)
,

as needed.

The next theorem is a direct extension of Theorem 3.2, Lemma 3.2 and their proofs from
[6].

Theorem 3.1. With the above notation and assumptions

1

N

N∑

n=1

Z
(n)

τn,m,N
t

a.s.−→ E
[
Z
τ
[m]
t

]
, as N → ∞,

for t = 1, . . . , T, provided that

P(emt (X)αm
t = Zt) = 0.

Proof: First we prove the following:

Claim 1: α
(m,N)
t

a.s.−→ αm
t as N → ∞ for t = 1, . . . , T − 1.

We know that A
(m,N)
t

a.s.−→ A
(m)
t because of the Law of Large Numbers. Hence, in view of

(1) and (2), we need to prove that:

1

N

N∑

n=1

Gt(α
(m,N), Z(n),X(n))

a.s.−→ ψt(α
(m)).

We use induction on t starting at T −1. For t = T −1, we have Gt+1(a
m, z, x) = zT e

m
T−1(x),

so the statement is true as the Law of Large Numbers implies that

1

N

N∑

n=1

Z
(n)
T emt (X(n))

a.s.−→ E[ZT e
m
T (X)],
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which is what we need. Assume that the statement is true for t. The Law of Large Numbers
implies that

1

N

N∑

n=1

Gt(α
m, Z(n),X(n))

a.s.−→ ψt(α
m),

so it suffices to prove that limN→∞GN = 0, where

GN =
1

N

N∑

n=1

(
Gt(α

(m,N), Z(n),X(n))−Gt(α
m, Z(n),X(n))

)
.

We have

|GN | ≤ 1

N

N∑

n=1

|emt−1(X
(n))||Ft(α

(m,N), Z(n),X(n))− Ft(α
m, Z(n),X(n))|

≤ 1

N

N∑

n=1

|emt−1(X
(n))|

(
T∑

s=t

|Z(n)
s |
)(

T−1∑

s=t

1WI(s,N)

)
,

where
WI(s,N) = {|Z(n)

s − αm
s e

m
s (X(n))| ≤ |α(m,N)

s − αm
s ||ems (X(n))|}.

For s = t, . . . , T − 1
α(m,N)
s

a.s.−→ αm
s , N → ∞.

Let

WII(s, ǫ) = {{|Z(n)
s − αm

s e
m
s (X(n))| ≤ ǫ|ems (X(n))|}},

WIII(s, ǫ) = {|Zs − αm
s e

m
s (X)| ≤ ǫ|ems (X)|}.

So ∀ ǫ > 0

lim sup |GN |
a.s.
≤ lim sup

1

N

N∑

n=1

[
|emt−1(X

(n))|
(

T∑

s=t

|Z(n)
s |
)(

T−1∑

s=t

1WII (s,ǫ)

)]

a.s.
= E

[
|emt−1(X)|

(
T∑

s=t

|Z(n)
s |
)(

T−1∑

s=t

1WIII(s,ǫ)

)]
,

The last equality follows from the Law of Large Numbers. If ǫ → 0, we get convergence
to zero, because of the probability assumption: if A,B, Y ≥ 0 and P(A = 0) = 0, then as
ǫց 0 ∫

{A≤ǫB}
Y dP ց

∫
⋂

ǫ>0{A≤ǫB}
Y dP =

∫

{A=0}
Y dP = 0.

Claim 2:

1

N

N∑

n=1

Ft(α
(m,N), Z(n),X(n))

a.s.−→ φt(α
(m)).
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As before we use induction on t starting at T−1. For t = T−1, we have Ft+1(a
m, z, x) = zT ,

so the statement is true as the the Law of Large Numbers implies that

1

N

N∑

n=1

Z
(n)
T

a.s.−→ E[ZT ],

which is what we need. Assume that the statement is true for t. The Law of Large Numbers
implies that

1

N

N∑

n=1

Ft(α
m, Z(n),X(n))

a.s.−→ φt(α
m),

so it suffices to prove that limN→∞ FN = 0, where

FN =
1

N

N∑

n=1

(
Ft(α

(m,N), Z(n),X(n))− Ft(α
m, Z(n),X(n))

)
.

We have

|FN | ≤ 1

N

N∑

n=1

|Ft(α
(m,N), Z(n),X(n))− Ft(α

m, Z(n),X(n))|

≤ 1

N

N∑

n=1

(
T∑

s=t

|Z(n)
s |
)(

T−1∑

s=t

1WI(s,N)

)
.

Now for any ǫ > 0

lim sup |FN |
a.s.
≤ lim sup

1

N

N∑

n=1

[(
T∑

s=t

|Z(n)
s |
)(

T−1∑

s=t

1WII(s,ǫ)

)]

a.s.
= E

[(
T∑

s=t

|Z(n)
s |
)(

T−1∑

s=t

1WIII(s,ǫ)

)]
,

The last equality follows from the Law of Large Numbers. If ǫ → 0, we get convergence to
zero, which is precisely what the conclusion of the theorem asserts. �

Theorems 2.4 and 3.1 provide a recipe for approximation of E[Zτ1 ] and hence also U0 =
max (Z0,E[Zτ1 ]), as required.

4 Examples

In this section we will show three examples of applications of the above least-squares algo-
rithm. The first example will cover American call and put options for Eurodollar futures
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assuming dynamics from the Brace-Gątarek-Musiela model [2]. Next we will price basket
and dual-strike American put options for EUROSTOXX50 and DAX indices under the stan-
dard bivariate Brownian dynamics. Finally we will show how to price univariate American
put options both for EUROSTOXX50 and DAX indices assuming that their dynamics could
be expressed using the Heston-Nandi GARCH(1,1) model [11].

We have chosen to use standard and classic models for parameter estimation, Monte Carlo
simulation, etc. to keep the examples transparent. In particular we will use only the prices of
the underlyings for calibration purposes and will not use any Monte Carlo variance reduction
techniques (for more advanced models cf. [1] or [9] and references therein).

The implementation of the least squares algorithm was based on the in-the-money realiza-
tions to speed up the convergence and reduce the number of polynomials needed to achieve
satisfactory accuracy (see [16] for discussion). We have also normalized the prices (again,
see [16] for details) to increase the accuracy. We have used weighted Laguerre polynomials
in univariate case and weighted polynomial base in bivariate case.

All computations were done using R 2.15.2 (64-bit). In particular we have used the li-
braries fOptions (for Heston-Nandi parameter calibration, CRR prices and Monte Carlo
simulation), orthopolynom (for different base functions in L-S algorithm), timeSeries
(for market data handling) and Rsge (for parallel computations).

4.1 Eurodollar options

In this subsection we will use the least squares algorithm to price a one year Eurodollar
American put and call options with different strike prices, given the real-market daily prices
of the Eurodollar futures. It should be noted, that the standard Black-Scholes model cannot
be used when the option price is based on more than one LIBOR rate (e.g. when the
option’s lifetime is longer than 3 months). This is due to the fact, that forward rates over
consecutive time intervals are related to each other and cannot all be log-normal under
the same spot risk-neutral measure. Consequently, models of such instruments under the
standard risk-neutral measure are based on non-Markovian dynamics. A. Brace, D. Gątarek
and M. Musiela [2] proposed a model (BGM Model) based on the forward arbitrage-free
risk-neutral measure which could overcome this inconvenience. In the literature it is also
referred to as the LIBOR Market Model (LMM). It is worth mentioning that the dynamics
of interest rates described in BGM model is very closely related to the Heath-Jarrow-Morton
(HJM) Model. To begin with, let us recall some basic information about Eurodollar futures,
Eurodollar options, BGM Model and the setup of the least squares algorithm.

Eurodollar futures

Eurodollar futures (also called LIBOR futures), are basically instruments that reflect the
3-month LIBOR rate for $1 million offshore deposit maturing at some point in the future
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(regulated by the exchange). Those instruments are very similar to the standard forward
rate agreement contracts, with the exception that their terms are strictly regulated by the
Chicago Mercantile Exchange (CME). A single contract is constructed in such a way that
1 basis point movement results in $25 payoff. While the Minimum Price Fluctuation is also
regulated, we will omit its description because it has no significant impact on the price of
the option (see www.cmegroup.com for details). The contract expiration dates are March,
June, September and December extending out for 10 years plus the four nearest months
that are not in the March quarterly cycle. This results in 44 different contracts. The last
trading day is the second London bank business day prior to the third Wednesday of the
contract month. The final cash settlement is 100 minus the British Bankers’ Association
survey of 3-month LIBOR rate. We will only use standard Eurodollar futures (i.e. we will
not use data from contacts with expiration date other that March quarterly cycle date).
The market practice is to quote the rates L on the Eurodollar futures in terms of the price
of the future, i.e. 100 × (1− L), where L is the predicted LIBOR rate (annualized).

Eurodollar options

Eurodollar option is a standard American-style option based on Eurodollar futures. Such
options are among the most actively traded interest rate options listed on the exchange
(CME). The underlying contracts for such options are usually 1, 2, 3 or 4 year Eurodollar
Futures with the expiration date in December (although options with other expiration dates
are also issued). The options lifetime ranges typically from 3 months to two years. They are
usually quoted within the range ±150bp with strike increments of 12.5bp (and 25bp within
the range ±550; where bp means basis point). For detailed description and other types of
options (i.e. Mid-Curve options, Weekly Mid-Curve options) see www.cmegroup.com.

The Brace-Gątarek-Musiela Model

The Brace-Gątarek-Musiela model (BGM) is a stochastic model of time-evolution of interest
rates. It will be used here to simulate the (Monte Carlo) paths of LIBOR futures. We will
now present a simplified BGM model fitted to our framework and give some comment on
the estimation procedure. Let T0 = 0 and Ti = Ti−1 +

3
12 for i = 1, 2, 3, 4. In reality the

dates of expiration for the consecutive Eurodollar futures differ slightly from 90 days, which
potentially might have an impact on the results, especially when we consider short time
options. Nevertheless we will use the theoretical values for simplicity. Let L0 be a spot
LIBOR rate and let Li : [0, Ti] × Ω → R be the i-th forward LIBOR rate. Assuming d
sources of randomness, the dynamics of the i-th LIBOR rate could be described as:

d logLi(t) =




i∑

j=i(t)

δjLj(t)

1 + δjLj(t)
σj(t)−

σi(t)

2


σi(t)dt+ σi(t)dW

QSpot(t)
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for t ∈ [0, Ti], where δi = Ti+1 − Ti = 3/12 is the accrual period of the i-th LIBOR forward
rate, σi(t) : [0, Ti]×Ω → Rd is the instantaneous volatility of the i-th LIBOR forward rate,
i(t) denotes the index of the bond (corresponding to the appropriate Eurodollar future)
which is first to expire at time t and finally WQSpot(t) is a standard (d-dimensional) Brownian
motion under the spot LIBOR measure QSpot. (See [12] for more details.) We are assuming
here that the sources of randomness are independent of each other and that the proper
dependency structure is modelled with σi. For the Monte Carlo simulation we will use a
(standard Euler) discretized version of the above SDE with the time step ∆t = 1

360 , i.e.

∆ logLi(t) =




i∑

j=i(t)

δjLj(t)

1 + δjLj(t)
σj(t)−

σi(t)

2


σi(t)∆t+ σi(t)ǫt

√
∆t (4)

where ǫt ∼ N (0, I) is a d-dimensional standard normally distributed random vector. In our
implementation we will use d = 3. To calibrate the model we need to define the functions
σi(t), for i = 1, 2, 3, 4. We will assume that σi(t) (for i = 1, 2, 3, 4) is time homogeneous i.e.
that there exist a function λ : [0, T ] → R3 such that

σi(t) = λ(Ti − t), 0 ≤ t ≤ Ti, i = 1, 2, 3, 4.

In other words we could say that the structure of σi(t) depends only on time to maturity of
Li. We will provide values of λ(Ti) for i = 1, 2, 3, 4 and assume that for t ∈ [Ti−1, Ti],

λ(t) = λ(Ti).

The values of the 3-dimensional vectors λ(Ti) could be arranged in a 4× 3 matrix Λ whose
entries are Λi,j = λj(Ti). We will apply the Principal Components Analysis (PCA) to Eu-
rodollar futures data to approximate the values of Λ. In other words we base our estimation
process on the correlation between the Eurodollar futures. A major problem in calibration
of PCA is that Eurodollar futures have fixed maturity dates, and so for a given T we could
observe a contract with volatility λ(T ) only once per three months. To overcome this, we
will use linear interpolation of the quoted prices of Eurodollar futures (which is in fact a
common market practice). In other words, we assume that given two contracts Li(t) and
Li+1(t) with maturities Ti and Ti+1, for any α ∈ [0, 1], the Eurodollar future with maturity
date (1−α)Ti +αTi+1 has the price (1−α)Li(t)+αLi+1(t). One should note that we need
the L5 prices to do such interpolation. Using that approach with Eurodollar futures prices
we obtain the values of contracts with volatility λ(Ti) (i=1,2,3,4) for every trading day t.
We also use linear interpolation of forward LIBOR rates for the days when the market is not
operating (i.e. we interpolate the contract prices using known quotes from the last trading
day before and the next trading day after the date in question.). Because of that assump-
tion, in order to conduct the PCA and to estimate σi (for i = 1, 2, 3, 4), we will need (for
each day) the prices of the five Eurodollar futures closest to delivery. Let us now comment
on the PCA estimation process. We assume that

Λi,j =
Θisjαi,j√∑d
k=1 s

2
kα

2
i,k
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for i = 1, 2, 3, 4 and j = 1, 2, 3. Here, s2j denotes the variance of the j-th factor computed by

PCA (s21 ≥ s22 ≥ s23), αi,j measures the influence of the j-th factor when the time to maturity
is in the period [Ti−1, Ti] and Θi :=

∑3
j=1 sjαi,j is total volatility in the i-th period. We

also assume that the factors are uncorrelated and that the relative influence of every factor
is 1 (i.e. for j1, j2 ∈ {1, 2, 3} we have

∑4
i αi,j1αi,j2 = 0 if j1 6= j2 and

∑4
i αi,j1αi,j2 = 1 if

j1 = j2). Note that using (4) and parameters from the PCA we could simulate Eurodollar
futures paths.

Setup, data details and the least squares method parameters

We will price the quarterly Eurodollar American call and put options EDZ2 (GEZ2 in Globex
notation; it means that the underlying instrument is the December 2012 Eurodollar future).
While the values of the American call options could be computed without the use of least
squares algorithm, because of coinciding with the European calls, we calculate them anyway
to provide more insight about how the parameters are fitted to the market data. In other
words we want to check empirically if the differences between the market prices and the
computed prices are the result of misfitting of the model parameters or are due to a problem
with accuracy of the least squares algorithm.

The first trade day for EDZ2 is December 13, 2010, and the expiration date is December
17, 2012. (It should be noted that the option was a two year option when it was issued
but we will be pricing it after one year). We will price several put and call options with
different closing prices - ranged from 98.00 to 99.75 - in the period from December 20, 2011
to January 20, 2012.

For the calibration purposes we will use the daily closing prices of Eurodollar futures and
the spot LIBOR rate. Given a date t, we will use a period of the same size as the time to
maturity of the option (i.e. if the option lifetime is 300 days then we take last 300 days data
before time t to calibrate our model).

The least squares algorithm needs several inputs. For the base functions generating the
“information about the past” we use a constant and the weighted Laguerre polynomials
with the exponential normalization factors up to 3rd degree i.e.

f0(x) = 1, f1(x) = e−x/2,

f2(x) = e−x/2(−x+ 1), f3(x) = e−x/2(0.5x2 − 2x+ 2).

Our implementation is based on the Monte Carlo simulation of the L4 values obtained using
(4). The algorithm needs also formulas for interest rate (for discounting purposes) in two
places. Firstly, to discount the values of options from one period to another (in the recursive
step-by-step part). Secondly, to compute the final price of the option (i.e. to discount the
optimal prices from every simulation to time T0 = 0). While the second interest rate could
be associated with standard spot LIBOR rate, the first one must be based on the evolution
of assets (i.e. for every path in the Monte Carlo run, one must estimate separately the spot
rate at time t using prices of Eurodollar contracts).
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Estimation and numerical results

Let us present detailed estimation results for the date December 20, 2011. Note that a
similar procedure must be conducted for all remaining days under consideration. Assuming
the BGM dynamics and taking into account the Eurodollar futures closing prices during the
period from December 26, 2010 to December 20, 2011 we have conducted PCA and obtained

Λ̂ =




0.024063776 0.033758193 0.040538115 0.043033555
0.024267981 0.018222734 0.007111945 −0.004846372
0.007801289 −0.001039692 −0.006052515 −0.004629562


 .

To price several put and call options with different strike prices and closing date on December
20, 2011 we have simulated a 10,000 strong Monte Carlo sample and using the least-squares
algorithm we have obtained prices for different strikes. The procedure was repeated 1000
times. The results are presented in Table 1 (with the sample mean µ and the sample
standard deviation σ consistent with the simulated distribution of the prices). The Monte
Carlo distributions of the prices of the Eurodollar put and call options with the strike price
99.50 could be seen in Figure 2. In Figure 1 we show examples of 100 Monte Carlo paths
together with the actual realization of the process.

We have performed a similar analysis for all days from December 21, 2011 to January 20,
2012. It should be noted that during this period, EDZ2 is the fourth closest to delivery
Eurodollar Future, so the estimation procedure is analogous. In Fig. 3 we can see the
dynamics of the original put and call option prices, the means from 1000 simulations (each
of size 10,000) and the lower and upper 5% quantiles for the put and call options with strike
price 99.50. The values of the mean and standard deviation of the simulated prices of the
options as well as the corresponding market prices of the options can be seen in Table 2.
We have chosen the strike price 99.50 because the mean volume of transactions was highest
in the considered period. It is interesting to note that the Monte Carlo price corresponding
to this strike price is always higher than the market price (see Table 2), which might be the
result of the fact that the option was actively traded (cf. Table 1, where the market price is
usually lower than the Monte Carlo mean price). Note also that the value of σ in Table 2
is highest for the strike price equal to 99.50, which might explain the interest in the option
with this particular strike price.

4.2 Basket and dual-strike options

In this subsection we will use the least squares algorithm to price 1.5 month basket and
dual-strike American put options, whose payoff functions are based on two market indices,
namely DAX and EUROSTOXX50 (which we will denote by EUR for brevity). We will
assume that the underlying instruments follow the standard bivariate Brownian dynamics.
Unfortunately, bivariate options are usually over-the-counter (OTC) instruments, so it is
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Figure 1: Examples of 100 Monte Carlo paths for the L4 contact (for 20.12.2011) and the
realized path (red) during the first 100 and 300 days.
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Figure 2: The smoothed densities of the simulated prices of the put (left) and the call (right)
option with strike 99.50 on December 20, 2011. The distribution is based on 1000 Monte
Carlo runs, each of size 10,000.

difficult to find market data for such options. Nevertheless, we could do a partial comparison
with the relevant one-dimensional standard American put options based on DAX and EUR.
As in the first example, let us start with some background.

DAX and EUROSTOXX50 Indices

The univariate standard American put options based on DAX and EUR are traded on
the Eurex Exchange (see www.eurexchange.com). In fact the underlyings are not indices
but exchange-traded funds (ETF) which are actively traded on the German stock market
(Deutsche Börse Group). The base currency for both options is the Euro. The iShares DAX
(DE) ETF Option (EXS1) underlying ISIN is DE00593391 and the iShares EUROSTOXX50
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Table 1: Prices of the Eurodollar options according to least squares algorithm (L-S), based
on 1000 Monte Carlo simulations (each of size 10,000). Here µ denotes the sample mean of
the 1000 prices obtained with MC simulation while σ denotes the sample standard deviation.

Date: 20.11.2011 Put Call

Strike Market price L-S µ L-S σ Market price L-S µ L-S σ

98.00 0.070 0.045 0.0038 1.295 1.267 0.0038
98.12 0.078 0.052 0.0043 1.178 1.154 0.0043
98.25 0.085 0.061 0.0044 1.060 1.032 0.0044
98.37 0.095 0.070 0.0048 0.945 0.922 0.0048
98.50 0.105 0.082 0.0050 0.833 0.804 0.0050
98.62 0.120 0.096 0.0055 0.723 0.698 0.0055
98.75 0.138 0.114 0.0058 0.615 0.587 0.0058
98.87 0.155 0.134 0.0061 0.508 0.488 0.0061
99.00 0.175 0.160 0.0067 0.403 0.386 0.0067
99.12 0.203 0.191 0.0078 0.308 0.298 0.0078
99.25 0.238 0.232 0.0088 0.218 0.211 0.0088
99.37 0.280 0.280 0.0097 0.135 0.141 0.0097
99.50 0.340 0.345 0.0110 0.073 0.079 0.0110
99.62 0.425 0.421 0.0094 0.033 0.036 0.0094
99.75 0.525 0.528 0.0044 0.008 0.009 0.0044
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Figure 3: Dynamics of the put (left) and call (right) option prices in the period from
December 20, 2011 to January 20, 2012 with the (0.05,0.95) confidence interval based on
the Monte Carlo simulation. The strike price is 99.50.

(DE) ETF Option (EUN2) underlying ISIN is IE0008471009. The DAX and EUR indices
are highly correlated. The estimated value of Pearson’s linear correlation coefficient in the
period from October 23, 2012 to January 08, 2013 is equal to 0.920. These indices have some
common stocks in their basket, which justifies the high correlation between them. There
also might be some contagion between these indices, but in such a short period of time (i.e.
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Table 2: Prices of the Eurodollar options with strike price 99.50, according to least squares
algorithm (L-S), based on 1000 Monte Carlo simulations (each of size 10,000). As before
µ denotes the sample mean of the 1000 prices obtained from the Monte Carlo simulation
whereas σ denotes the sample standard deviation.

Date
Put Call

Market price L-S µ L-S σ Market price L-S µ L-S σ

20.12.2011 0.340 0.345 0.0110 0.073 0.079 0.0011
21.12.2011 0.342 0.349 0.0110 0.070 0.078 0.0011
22.12.2011 0.358 0.366 0.0112 0.065 0.074 0.0011
23.12.2011 0.370 0.382 0.0111 0.058 0.071 0.0011
27.12.2011 0.375 0.382 0.0103 0.058 0.066 0.0010
28.12.2011 0.378 0.385 0.0102 0.055 0.064 0.0010
29.12.2011 0.352 0.364 0.0104 0.055 0.068 0.0010
30.12.2011 0.318 0.327 0.0093 0.062 0.076 0.0011
03.01.2012 0.325 0.340 0.0088 0.058 0.072 0.0011
04.01.2012 0.315 0.326 0.0086 0.060 0.074 0.0011
05.01.2012 0.300 0.318 0.0084 0.055 0.076 0.0011
06.01.2012 0.258 0.279 0.0079 0.062 0.086 0.0012
09.01.2012 0.222 0.244 0.0072 0.072 0.095 0.0012
10.01.2012 0.218 0.240 0.0071 0.072 0.096 0.0012
11.01.2012 0.195 0.214 0.0069 0.085 0.105 0.0012
12.01.2012 0.175 0.190 0.0054 0.100 0.115 0.0013
13.01.2012 0.180 0.189 0.0054 0.105 0.115 0.0013
17.01.2012 0.168 0.171 0.0046 0.118 0.121 0.0012
18.01.2012 0.180 0.188 0.0053 0.105 0.113 0.0013
19.01.2012 0.175 0.184 0.0053 0.105 0.115 0.0013
20.01.2012 0.182 0.191 0.0054 0.102 0.112 0.0012

1.5 month) it should not present a problem. If necessary, one could adopt here models with
different dynamics (e. g. from the multivariate GARCH variety). Such approach would be
very closely related to the Heston and Nandi option pricing model [11]. We will describe
this type of approach in the next example.

Basket and Dual-strike options

As has been already stated above, basket and dual-strike options are mainly OTC derivatives.
In this example we will consider a bivariate American put option. The payoff functions at
time t, for a bivariate Basket American put option (1) and Dual-strike American put option
(2) is given by

p(1)(t) = max (X1 − S1(t),X2 − S2(t), 0) ,

25



p(2)(t) = max

(
X1 +X2

2
− S1(t) + S2(t)

2
, 0

)
,

where S1(t) and S2(t) are the prices of the first and the second underlying at time t, respec-
tively, and X1, X2 are the strike prices.

The asset dynamics

We will assume that the stochastic process (S1(t), S2(t)) is a 2-dimensional geometric Brow-
nian motion. In this case the instantaneous covariance matrix for the processes log S1 and
log S2 is

Cov[d log S1(t), d log S2(t)] = H dt,

where H is a positive definite (2× 2)-matrix. Let σ be a (2× 2)-matrix such that σσ∗ = H,
where σ can be obtained – for example – via the standard Cholesky factorization. Let σ1
and σ2 denote the rows of σ. With respect to the risk-neutral probability measure

Si(t2) = Si(t1) exp

[(
r − σiσ

∗
i

2

)
(t2 − t1) + σi (W (t2)−W (t1))

]
, i = 1, 2,

where 0 ≤ t1 < t2 , r is a risk-free rate and W is a standard 2-dimensional Wiener process
written in a column form. The following is a discretized version of this formula expressed in
terms of log-returns:

∆ log Si(t) =

(
r − σiσ

∗
i

2

)
∆t+

√
∆tσiǫt, i = 1, 2,

where ǫt is a standard bivariate normal random column vector.

Setup, data details and the least squares method parameters

In this example we will construct a bivariate Basket and Dual-Strike American put options
based on 1 DAX ETF share and 2.5 EUR ETF shares (to have similar strike prices in both
cases). We will price Basket and Dual-strike put options on January 08, 2013 with the
expiration date March 16, 2013 (to make it comparable to existing univariate options). The
option lifetime will be 49 business days. The strike prices will range from 65 to 75 and from
66 to 76, for the first and the second strike price, respectively.

To estimate the covariance matrix H we will use the last 50 observations of the price of ETF
(DE) DAX and ETF (DE) EUROSTOXX50. Choosing of a relatively short time interval for
calibration purposes is quite common in practice (e.g. this is the case with the estimation
of the VIX volatility index).

As in the previous case, we will need two inputs for the least squares algorithm: an interest
rate (for discounting) and appropriate basis functions. Because the option lifetime is short,
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we will assume that the interest rate is constant and equal to r = 1.50% (the ECB interest
rate on January 08, 2013). Moreover, we will use weighted polynomial base up to the second
degree with exponential normalization factors (as in [16]):

f0,0(x, y) = e
1
2 , f1,0(x, y) = e

−x
2 x, f0,1(x, y) = e

−y

2 y, f1,1(x, y) = e
−(x+y)

4 xy,

f1,2(x, y) = e
−(x+y)

4 xy2, f2,1(x, y) = e
−(x+y)

4 x2y, f2,2(x, y) = e
−(x+y)

4 x2y2.

Estimation and numerical results

The estimated (annualized) covariance matrix is equal to

Ĥ :=

[
0.0178 0.0147
0.0147 0.0142

]
,

from which we obtain ρ = 0.920, σ1 = 0.133 and σ2 = 0.119. Using the matrix Ĥ, we run
100,000 Monte Carlo simulations (each of size 49). Next, using the least squares algorithm
we compute the prices of basket and dual-strike American put options for different strike
prices. We also compute the least squares prices for the univariate American put options
based on 1 DAX ETF share and 2.5 EUR ETF share. Apart from the market data we also
present the theoretical price according to the Cox-Ross-Rubinstein model (CRR) as it is used
by the Eurex Exchange to quote option prices when no trading takes place. It should be
noted that the volume of transaction of American put options is very low, so unfortunately
the market price is just for comparison purposes. Also, the least squares price should be
compared with the CRR price, rather than the market price (as it is computed under the
compatible assumptions about the asset dynamics).

The prices (obtained using single 100,000 Monte Carlo run) can be seen in Table 3. The
columns with names DAX and EUR denote the standard univariate put options (i.e. with 1
DAX ETF and 2.5 EUR ETF share as the underlying respectively). We have also performed
multiple Monte Carlo runs (1000), each of size 10,000 for the Basket and Dual-Strike options
with strike price (70, 70). The corresponding Monte Carlo density function could be seen
in Figure 4 (this could provide some information about the model and/or the Monte Carlo
bias).

4.3 The Heston-Nandi model

In the last example we will use the least squares algorithm to price two 1.5 month American
put options, whose payoff function is based on a single market index. We will use data
from the previous example, i.e. we will price options based on DAX and EUR indices. We
will assume that the dynamics of the underlyings could be described with the Heston-Nandi
GARCH Model [11].
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Table 3: Prices of the options according to historical stock market data, the CRR model
and the least squares algorithm (L-S). Here S0 = (68.05, 69.72), r = 1.50%, T = 49/252,
σ1 = 0.133, σ2 = 0.119, ρ = 0.920.

Strike price Market price CRR price L-S price

EUR DAX EUR DAX EUR DAX EUR DAX Basket Dual-Strike

65 66 0.58 0.34 0.45 0.25 0.44 0.24 0.31 0.46
67.5 66 1.50 0.34 1.25 0.25 1.23 0.24 0.59 1.23

70 66 3.10 0.34 2.67 0.25 2.63 0.24 1.00 2.65
72.5 66 5.15 0.34 4.63 0.25 4.62 0.24 1.58 4.62

75 66 7.53 0.34 6.95 0.25 6.95 0.24 2.33 6.95

65 68 0.58 0.85 0.45 0.69 0.44 0.67 0.52 0.72
67.5 68 1.50 0.85 1.25 0.69 1.23 0.67 0.91 1.27

70 68 3.10 0.85 2.67 0.69 2.63 0.67 1.45 2.65
72.5 68 5.15 0.85 4.63 0.69 4.62 0.67 2.17 4.62

75 68 7.53 0.85 6.95 0.69 6.95 0.67 3.04 6.95

65 70 0.58 1.74 0.45 1.52 0.44 1.49 0.82 1.50
67.5 70 1.50 1.74 1.25 1.52 1.23 1.49 1.33 1.64

70 70 3.10 1.74 2.67 1.52 2.63 1.49 2.01 2.67
72.5 70 5.15 1.74 4.63 1.52 4.62 1.49 2.86 4.62

75 70 7.53 1.74 6.95 1.52 6.95 1.49 3.85 6.95

65 72 0.58 3.00 0.45 2.79 0.44 2.75 1.22 2.76
67.5 72 1.50 3.00 1.25 2.79 1.23 2.75 1.86 2.77

70 72 3.10 3.00 2.67 2.79 2.63 2.75 2.67 3.09
72.5 72 5.15 3.00 4.63 2.79 4.62 2.75 3.64 4.63

75 72 7.53 3.00 6.95 2.79 6.95 2.75 4.72 6.95

65 76 0.58 6.43 0.45 6.29 0.44 6.28 2.33 6.28
67.5 76 1.50 6.43 1.25 6.29 1.23 6.28 3.24 6.28

70 76 3.10 6.43 2.67 6.29 2.63 6.28 4.28 6.28
72.5 76 5.15 6.43 4.63 6.29 4.62 6.28 5.41 6.30

75 76 7.53 6.43 6.95 6.29 6.95 6.28 6.62 7.16

Heston-Nandi GARCH Model

As we have mentioned before, sometimes it is better to use GARCH(1,1) dynamics or its
modifications rather than the standard discretised geometric Brownian motion to describe
price fluctuations. Let St denote the price of the underlying. Using Heston-Nandi GARCH
dynamics, simplified to our framework, we will assume that the log-returns of the random
process St could be described by formula

∆ log St = rdaily + λσ2t + σtǫt,

σ2t = ω + βσ2t−1 + α(ǫt−1 − γσt−1)
2,
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Figure 4: The smoothed densities of the least squares prices of the basket (left) and the
dual-strike (right) American put options for the strike price (70, 70). Density estimation
is based on multiple Monte Carlo runs (1000) each consisting of 10,000 price paths. The
vertical line depicts the least squares price obtained with the single 100,000 Monte Carlo
simulation.

where ∆ denotes the daily backward difference (i.e. ∆ logSt = log(St/St−1), the parameter
rdaily denotes daily riskless interest rate, (λ, ω, β, α, γ) are model parameters and ǫt is a
standard Gaussian white noise. We will additionally assume that there is no asymmetry,
i.e. γ = 0.

If we use the standard Heston-Nandi dynamics (i.e. the objective probability measure) then
the discounting part of the least squares algorithm will be path dependent. In order to
avoid this complication we will switch to the risk-neutral measure and use the risk-neutral
dynamic of the underlying return. The risk neutral process is obtained simply by replacing
(previously estimated) parameters λ and γ with (−0.5) and (γ+λ+0.5) respectively (see [11]
for details). Moreover, we will use the long run (expected) standard deviation from Heston
Nandi model for comparison purposes. It is equal to [11]

σHN =
ω + α

1− β − αγ2
. (5)

Setup, data details and the least squares method parameters

We will use the data from the previous example, i.e. we will use EUR and DAX as the
underlyings. As before, the options expiration date will be March 16, 2013 and we will price
them on January 08, 2013 (thus the option lifetime will be 49 business days).

Also, as in the first example, we will use weighted Laguerre polynomials with the exponential
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normalization factors up to 3rd degree i.e.

f0(x) = 1, f1(x) = e−x/2,

f2(x) = e−x/2(−x+ 1), f3(x) = e−x/2(0.5x2 − 2x+ 2)

as base polynomials for the regression procedure.

Estimation and numerical results

As before, we will assume that (annualised) risk free rate is equal to r = 1.50% and put
rdaily = r/252 (as there are 252 trading days each year). Using the last 50 prices of 1 DAX
ETF and 2.5 EUR ETF shares we have obtained two sets of parameters:

λEUR = 7.280, ωEUR = 2.738e-05, αEUR = 5.238e-05, βEUR = 0.086,
λDAX = 16.971, ωDAX = 1.954e-05, αDAX = 5.404e-05, βDAX = 4.758e-28.

The (annualised) volatilities obtained from (5) are equal to σ1 = 0.149 and σ2 = 0.137, re-
spectively. The mean sample prices of American put options, obtained from ten simulations
(each consisting of 100,000 Monte Carlo paths) can be seen in Tables 4 and 5. We also
present the theoretical European put option prices according to Heston-Nandi model [11] as
well as the American put options prices and early exercise premiums (i.e. the differences be-
tween the prices of American and European put options) according to Cox-Ross-Rubinstein
model (CRR), with volatilities obtained from (5). Both models are presented for comparison
purposes. Moreover, we perform multiple Monte Carlo runs (1000), each of size 10,000, to
calculate prices of the American put options with strike price 70 (both for EUR and DAX).
The obtained Monte Carlo density functions could be seen in Figure 5 (this could provide
some information about the model and/or the Monte Carlo bias).

Table 4: Prices of the EUR American put options according to the least squares algorithm,
compared with the actual market prices, CRR model prices and the Heston-Nandi European
put option prices. EA denotes the early exercise premium. Here S0 = 68.05, r = 1.50%,
T = 49/252, σ1 = 0.149.

Strike price Market price CRR price CRR EA H-N price L-S price

65.0 0.58 0.57 0.00 0.57 0.57
67.5 1.50 1.41 0.01 1.40 1.40
70.0 3.10 2.79 0.03 2.78 2.79
72.5 5.15 4.67 0.06 4.66 4.71
75.0 7.53 6.88 0.11 6.88 6.98
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Table 5: Prices of the DAX American put options according to the least squares algorithm,
compared with the actual market prices, the CRR model prices and the prices of the Euro-
pean put options based on the Heston-Nandi model. EA denotes Early Exercise Premium.
Here S0 = 69.72, r = 1.50%, T = 49/252, σ1 = 0.137.

Strike price Market price CRR price CRR EA H-N price L-S price

66 0.34 0.38 0.00 0.38 0.38
68 0.85 0.88 0.01 0.87 0.87
70 1.74 1.74 0.01 1.70 1.70
72 3.00 2.98 0.03 2.91 2.92
76 6.43 6.33 0.10 6.22 6.31
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Figure 5: The smoothed distributions of the least squares prices of the EUR (left) and DAX
(right) American put options (with strike price 70) with the dynamics of the underlying
described by the Heston Nandi GARCH model. The prices were computed using multiple
Monte Carlo runs (1000) each generating 10,000 values. The vertical line corresponds to the
sample mean least squares price obtained with ten 100,000 Monte Carlo simulations.

5 Concluding remarks

In the paper we have shown that the widely used least squares approach to Monte Carlo
based pricing of American options can remain valid under very general and flexible choice of
assumptions. In particular, convergence to the theoretical price obtained via Snell envelopes
is true even if the pay-offs are path dependent, the underlying is non-Markovian and with a
highly adaptable setup for approximation of conditional expectations. On the one hand, the
computational cost of liberalization of the assumptions may be potentially very high. On
the other hand, we present three examples supporting a growing body of empirical evidence
showing how in many practical applications even relatively limited non-linear extensions
of standard regression may produce reasonable results. The relaxation of the assumptions
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of the method should be seen primarily as increase in freedom of choice of settings for a
specific implementation of the algorithm, which with careful choices may nevertheless retain
computational viability.
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