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Abstract

In this paper we discuss an empirical phenomena known as the 20-60-20 rule. It says that if we
split the population into three groups, according to some arbitrary benchmark criterion, then this
particular ratio implies some sort of balance. From practical point of view, this feature often leads to
efficient management or control. We provide a mathematical illustration, justifying the occurrence of
this rule in many real world situations. We show that for any population, which could be described
using multivariate normal vector, this fixed ratio leads to a global equilibrium state, when dispersion
and linear dependance measurement is considered.

Keywords: 20-60-20 Rule, 60/20/20 Principle, 20:60:20, Pareto principle, law of the vital few, the
principle of factor sparsity, truncated normal distribution, conditional elliptic distribution.

MSC2010: 60K30, 91B10, 91B14, 91B52. 60A86, 62A86,

Introduction

The 20-60-20 rule is an empirical statement. It says that if we want to split the population into three
groups, using some arbitrary benchmark criterion, then the ratio of 20%, 60% and 20% proves to give
an efficient partition. The division is usually made according to the performance of each element in the
population and the groups are referred to as negative, neutral and positive, respectively. The first group
relates to elements of population which positively contribute to the considered subject (e.g. effective
workers, top sale managers, productive members), while the last one denotes the opposite. The middle
set corresponds to the middle part of the population, having average performance. Putting it another
way we cluster the population basing on a notion of effectiveness.

The importance of this rule comes from the fact that this particular partition seems to be the most
effective one, for many empirical problems. Let us present in details two common illustrations of this
phenomena and then comment on the efficiency to make this idea more transparent.

The first example considers sales departments. In almost any big company, the employees of the
sales department could be split into three groups, maintaining 20-60-20 ratio. The first group are top
performers, who make big profits, even without supervision. The middle group are people who need to
be managed to make average but stable profits. The last group are people who are heading towards
termination or resignation. They produce no good income, even when supervised.

The second example relates to change capability. If you are willing to make substantial changes in
any big institution, then on average 20% of the people are ready, willing and able to change, while 20%
of people would not accept the change, whatever the cost. The middle 60% will wait to see how the
situation turns out.

Corporations use the 20-60-20 rule widely in management and sales departments [15, 13]. One of the
practical aspects of this phenomena relates to the fact that different procedures and methods are created
to handle the efficiency in positive, negative and neutral group and the 20-60-20 ratio proves to be the
most efficient partition. For example, in many problems related to human resource management, one
should identify and focus his attention on the middle 60%, as this group could and should be managed
efficiently.

∗Institute of Mathematics, University of Warsaw, Warsaw, Poland.
†Institute of Mathematics, Jagiellonian University, Cracow, Poland.
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Of course there are countless illustrations of this phenomena. One could consider financial market
overall condition, fraud and theft capability among group of people, the structure of electorate, sport
performance among athletes, potential of students, patient handling, medical treatments, etc. Please see
e.g. [14, 3, 1, 5, 7, 8, 11, 2, 4], where the 20-60-20 ratio is used and the detailed procedures are proposed
to handle many practical problems.

The natural question is why this specific 20/60/20 ratio is valid in so many situations? Why not
10/80/10 or 30/40/30? Is this a coincidence, or does it follow from some underlying and fundamental
structure of the population?

While very popular among practitioners, no scientific evidence of the 20-60-20 principle has been
presented yet, due to the authors knowledge. Consequently, this noteworthy rule become more of a
slogan, than the scientific fact.

The possible mathematical illustration of this phenomena, based on the dispersion and linear depen-
dance measurement will be the main topic of this paper. We will show that if a (multivariate) random
vector is distributed normally and we do conditioning based on the (quantile function of) first coordinate,
then the ratio close to 20/60/20 imply a global equilibrium state, when dispersion and linear dependance
measurement is considered. In particular, we prove that this particular partition implies the equality
of covariance matrices, for all conditional vectors, implying some sort of global balance in the popula-
tion. We will also discuss the case of monotone dependance using conditional Kendall τ and Spearman
ρ matrices.

The material is organized as follows. The introduction is followed by a short preliminaries, where we
establish basic notations used throughout this paper. Next, in Section 2 we introduce a mathematical
model for the 20-60-20 rule and define the equilibrium state, using conditional covariance matrices. The
20-60-20 rule for multivariate normal vectors is discussed in Section 3. Theorem 1 might be considered as
the main result of this paper. Section 4 is devoted to the study of different equilibrium states, obtained
using correlation matrices, Kendall τ matrices and Spearman ρ matrices. In particular we present here
some theoretical results, when Spearman ρ matrices are considered and a numerical example, illustrating
the 20-60-20 rule for sample data. In Section 5 we discuss shortly what happens if we loose the assumption
about normality. The general elliptic case is considered here.

1 Preliminaries

Let (Ω,Σ,P) be a probability space and let n ∈ N. Let us fix an n-dimensional continuous random vector
X = (X1, . . . , Xn). We will use

H(x1, . . . , xn) := P[X1 ≤ x1, . . . Xn ≤ xn],

to denote the corresponding joint distribution function and

Hi(x) = P[Xi ≤ x], i = 1, 2, . . . , n,

to denote the marginal distribution functions. Given a Borel set B in R̄
n such that

P[{ω ∈ Ω : (X1(ω), . . . , Xn(ω)) ∈ B}] > 0

we can define the conditional distribution HB for all (x1, . . . , xn) ∈ B by

HB(x1, . . . , xn) = P[X1 ≤ x1, . . . , Xn ≤ xn | X ∈ B]. (1)

Putting it in another words we truncate the random vector X to the Borel set B. If necessary, we assume
the existence of regular conditional probabilities. In this paper we will assume that B is a non-degenerate
rectangle, i.e. B ∈ R, where

R := {A ∈ R̄
n : A = [a1, b1]× [a2, b2]× . . .× [an, bn], where an, bn ∈ R̄ and an < bn}.

As we will be mainly interested in quantile-based conditioning on the first coordinate, for q1, q2 ∈ [0, 1]
such that q1 < q2, we shall use notation

H[q1,q2](x1, . . . , xn) := HB(q1,q2)(x1, . . . , xn), (2)
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where the conditioning set is given by

B(q1, q2) := [H−1
1 (q1), H

−1
1 (q2)]× R̄× . . .× R̄.

We shall also refer to H[q1,q2] as the truncated distribution, while B(q1, q2) will be called truncation interval
(see [10]).

Moreover, we will denote by µ = (µ1, . . . , µn) and Σ = {σ2
ij}i,j=1,...,n, the mean vector and covariance

matrix of X . Similarly as in formula (1), given B, we will use µB and ΣB to denote the conditional mean
vector and the conditional covariance matrix, i.e. mean vector and conditional covariance matrix of a
random vector with distribution HB. Consequently, as in (2), we shall write

µ[q1,q2] := µB(q1,q2) and Σ[q1,q2] := ΣB(q1,q2).

We will also use Φ and φ to denote the distribution and density function of a standard univariate normal
distribution, respectively.

2 The global balance

To split the whole population into three separate groups basing on a notion of effectiveness, we need to
make an assumption about the probability distribution of the whole population and the given benchmark,
which measures the effectiveness of each element in the population. We will assume that X ∼ N (µ,Σ),
i.e. the population could be described using n-dimensional random vector X = (X1, . . . , Xn), which is
normally distributed with mean vector µ and covariance matrix Σ. Furthermore, we will assume that
the benchmark level is determined by the first coordinate, i.e. X1. Please note that for multivariate
normal this may be a linear combination of all other coordinates. One could look at other coordinates as
various factors, which could influence the main benchmark. Note that, if we talk about people measures
or abilities, then Gaussian functions, often described as bell curves, are a natural choice.

We will seek for two real numbers q1, q2 ∈ [0, 1] and the corresponding partition

B(0, q1), B(q1, 1− q2), B(1− q2, 1),

which will admit some sort of equilibrium. In other words, we want to divide the whole population into
three subgroups, corresponding to the lower 100q1%, the middle 100(1− q1− q2)% and the upper 100q2%
of the population, where the effectiveness is measured by the benchmark. To do so, let us give a definition
of equilibrium state or global balance.

Definition 1. We will say that a global balance (or equilibrium state) is achieved in X if

Σ[0,q1] = Σ[q1,1−q2] = Σ[1−q2,1], (3)

for some q1, q2 ∈ [0, 1], such that q1 < q2.

Definition 1 seems to be very intuitive. Indeed, the equality of conditional covariance matrices say
that:

1. The dispersion measured by variance is the same in each subgroup for any coordinate Xi (for
i = 1, 2, . . . , n). In particular the dispersion of the benchmark is the same everywhere.

2. The linear dependance structure, measured by the conditional correlation matrices, is the same in
all three subgroups.

The first property creates a natural equilibrium state, as any perturbation leads to irregularity, when
the square distance from the average member of each group is considered. The choice of this measure of
dispersion seems to be natural, because people awareness of any differences should be high, as variance
(or standard deviation) seems to be the simplest measure of variability.

The second property relate to the linear dependence structure. The equality of correlation matrices
imply a natural equilibrium between groups, as people tend to notice the simplest (linear) dependancies
first. Any shift between groups will cause dependence instability between them.

In general (i.e. when we loose assumption about normality) the global balance might not exists or
strongly depend on initial Σ, when we consider some family parametrised by covariance matrices.
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3 The 20/60/20 principle

If X is a multivariate normal, it is reasonable to set q1 = q2, due to the symmetry of the Gaussian
density. For simplicity we will use q = q1 = q2 for the symmetric case. Thus, we will in fact seek for
q ∈ (0, 0.5) such that the conditional covariance matrix for the lower 100q% of the population coincide
with the conditional covariance matrices of the middle 100(1− 2q)% and upper 100q%.

We are now ready to present the main result of this paper. We will show that if X ∼ N (µ,Σ), then
the equilibrium state will be achieved for the unique q ∈ (0, 0.5). This is a statement of Theorem 1.

Theorem 1. Let X ∼ N (µ,Σ). Then there exists a unique q ∈ (0, 0.5) such that the global balance in
X is achieved, i.e. the equality (3) is true for q = q1 = q2. Moreover, the value of q is independent of µ
and Σ and the approximate value of q is 0,198089616...

The proof of Theorem 1 is surprisingly simple. It is a direct consequence of Lemma 1 and Lemma 2,
which we will now present and prove. Before we do this, let us give a comment on Theorem 1. It says that
if we split the whole population, into three separate groups, then the ratio close to 20-60-20 (and in fact
only this ratio), will imply the equality of conditional covariance matrices for all groups, creating a natural
equilibrium. To prove Theorem 1 we need an analytic formula for conditional covariance structure, given
any conditioning Borel set B of positive measure. This will be the statement of Lemma 1.

Lemma 1. Let X ∼ N (µ,Σ). Then for any Borel subset B of R with positive measure,

ΣB = Σ+ (D2[X1 | X1 ∈ B]−D2[X1])ββ
T ,

where

βT = (β1, . . . , βn), βi =
Cov[X1, Xi]

D2[X1]
.

Proof of Lemma 1. Being in Gaussian world we can describe each random variable Xi as a combination
of the random variable X1 and a random variable Yi independent of X1. Indeed, we put for i = 1, . . . , n

Yi = Xi − βiX1, where βi =
Cov[X1, Xi]

D2[X1]
. (4)

Obviously β1 = 1 and Y1 = 0. Since for i = 2, . . . , n, the newly defined variable Yi is uncorrelated with
X1, they are independent.
Next, we calculate the conditional covariance matrix. Using (4), we get for i, j = 1, . . . , n

Cov[Xi, Xj | X1 ∈ B] = Cov[βiX1 + Yi, βjX1 + Yj | X1 ∈ B].

Since Yi and Yj do not dependent on X1, we get

Cov[Yi, X1 | X1 ∈ B] = 0 = Cov[Yj , X1 | X1 ∈ B],

and
Cov[Yi, Yj | X1 ∈ B] = Cov[Yi, Yj ] = Cov[Xi, Xj ]− βiβjD

2[X1].

Therefore, we obtain

Cov[Xi, Xj | X1 ∈ B] = Cov[Xi, Xj] + βiβj(D
2[X1 | X1 ∈ B]−D2[X1]).

Since βiβj is the i, j-th entry of the n× n matrix ββT , we finish the proof of the lemma.

From Lemma 1 we see, that we can parametrise ΣB in such a way, that it will only depend on the
conditional variance of X1. Thus, we only need to show that there exists q ∈ (0, 0.5) such that the
(conditional) dispersion of X1 in all three groups, determined by sets B(0, q), B(q, 1− q) and B(1− q, 1)
will coincide. This will be the statement of Lemma 2.
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Lemma 2. Let X1 ∼ N (µ1, σ
2
11). Then there exist a unique q ∈ (0, 0.5) such that

D2[X1 | X1 ∈ B(0, q)] = D2[X1 | X1 ∈ B(q, 1− q)] = D2[X1 | X1 ∈ B(1− q, 1)].

Moreover, q = Φ(x), where x < 0 is the unique negative solution of the following equation

− xΦ(x) = φ(x)(1 − 2Φ(x)), (5)

where φ and Φ denote the density and distribution function of standard normal, respectively. The ap-
proximate value of q is 19,8089616....

Proof of Lemma 2. Without any loss of generality we may assume that X1 has the standard normal
distribution N (0, 1). Indeed, for Xst

1 = X1−µ1

σ11

, and q1, q2 ∈ [0, 1], such that q1 < q2, we get

D2
[

X1 | H1(X1) ∈ [q1, q2]
]

= D2
[

σ11X
st
1 + µ1 | Φ(Xst

1 ) ∈ [q1, q2]
]

= σ2
11D

2
[

Xst
1 | Φ(Xst

1 ) ∈ [q1, q2]
]

.

To proceed, we need to compute the first two moments of the truncated normal distribution of X1.
For transparency, we will show full proofs (compare [10, Section 13.10.1]).

Let us calculate the conditional expectations E[X1 | X1 < x] and E[X1 | x < X1 < −x] for any fixed
x ∈ (−∞, 0). Since φ′(x) = −xφ(x), we get

E[X1 | X1 < x] =
1

Φ(x)

∫ x

−∞

ξφ(ξ)dξ =
1

Φ(x)
(−φ(ξ))|x−∞ = −φ(x)

Φ(x)
,

E[X1 | x < X1 < −x] = 0.

To get the corresponding second moments we integrate by parts.

E[X2
1 | X1 < x] =

1

Φ(x)

∫ x

−∞

ξ2φ(ξ)dξ =
1

Φ(x)

(

−ξφ(ξ))|x−∞ +

∫ x

−∞

φ(ξ)dξ

)

=
1

Φ(x)
(−xφ(x) + Φ(x)) = 1− xφ(x)

Φ(x)
,

E[X2
1 | x < X1 < −x] =

1

1− 2Φ(x)

∫ −x

x

ξ2φ(ξ)dξ =
1

1− 2Φ(x)

(

−ξφ(ξ))|−x
x +

∫ −x

x

φ(ξ)dξ

)

=
1

1− 2Φ(x)
(2xφ(x) + 1− 2Φ(x)) = 1 +

2xφ(x)

1− 2Φ(x)
.

Therefore,

D2[X1 | X1 < x] = 1− xφ(x)

Φ(x)
− φ(x)2

Φ(x)2
,

D2[X1 | x < X1 < −x] = 1 +
2xφ(x)

1− 2Φ(x)
.

Since the conditional expected value behaves like a weighted arithmetic mean, we get that E[X1 | X1 < x]
is strictly increasing in x, while E[X2

1 | x < X1 < −x] and E[X2
1 | X1 < x] are strictly decreasing with

respect to x. Consequently, the central conditional variance D2[X1 | x < X1 < −x] is strictly decreasing.
Next, we will show that the tail conditional variance D2[X1 | X1 < x] is strictly increasing. Indeed,

d

dx
D2[X1 | X1 < x] = − φ(x)

Φ(x)
+ x2 φ(x)

Φ(x)
− x

φ(x)2

Φ(x)
+ 2x

φ(x)2

Φ(x)
+ 2

φ(x)2

Φ(x)2

=
φ(x)

Φ(x)

(

x2 − 1 + x
φ(x)

Φ(x)
+ 2

φ(x)2

Φ(x)2

)

=
φ(x)

Φ(x)

(

(

x2 − 1

2

φ(x)

Φ(x)

)2

+
7

4

φ(x)2

Φ(x)2
− 1

)

> 0.

The last inequality follows from the fact that since φ(x)
Φ(x) = −E[X1 | X1 < x] is decreasing and positive,

we get
φ(x)2

Φ(x)2
≥ φ(0)2

Φ(0)2
=

2

π
>

4

7
.
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Next, note that (compare [9, Lemma 8.1])

lim
x→−∞

D2[X1 | X1 < x] = 0 and D2[X1 | X1 < 0] = 1− 2

π
,

while
lim

x→−∞
D2[X1 | x < X1 < −x] = 1 and lim

x→0
D2[X1 | x < X1 < −x] = 0.

Hence there exists a unique x < 0 such that

D2[X1 | X1 < x] = D2[X1 | x < X1 < −x].

Compare Figure 1 for visualization.
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Figure 1: The graph of conditional tail variance D2[X1 | X1 ∈ B(0, q)] and conditional central variance
D2[X1 | X1 ∈ B(q, 1− q)] as functions of q ∈ (0, 0.5), under the assumption X1 ∼ N (0, 1).

Moreover,

D2[X1 | X1 < x]−D2[X1 | x < X1 < −x] = 1− xφ(x)

Φ(x)
− φ(x)2

Φ(x)2
− 1− 2xφ(x)

1− 2Φ(x)

=
Φ(x)

Φ(x)2(1− 2Φ(x))
(−xΦ(x)− φ(x)(1 − 2Φ(x))) ,

which shows that x is a (negative) solution of equation (5). Using basic numerical tools we checked
that (5) is satisfied for x ≈ −0, 8484646848, for which Φ(x) ≈ 0, 198089615.

Theorem 1 provides an illustration to the empirical 20-60-20 rule. In particular we have shown that for
any multivariate normal vector, this fixed ratio leads to a global equilibrium state, when dispersion and
linear dependance measurement is considered. Nevertheless, please note, that the equality of conditional
variances does not imply the equality of conditional distributions, as could be seen in Figure 1.

Also, while linear dependance structure will be the same, the overall dependance in each subgroup,
measured e.g. by the copula function [12], will be different. Indeed, for example it seems to be unwise
to require the dependance structure in the best group, to coincide with the dependance structure in the
average group. See Figure 2 for an illustrative example.

Remark 1. The equilibrium level q calculated in Lemma 2 depends neither on µ nor Σ. Therefore, if
we consider correlation matrices instead of covariance matrices in (3), then the optimal value of q from
Theorem 1 will also imply the corresponding equilibrium state, for correlation matrices.1

1Please note we need additional assumption that X1 is not independent of (X2, . . . ,Xn) as otherwise any q ∈ (0, 0.5)
will satisfy (3) for correlation matrices instead of covariance matrices.
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Figure 2: The conditional density function of the lower 20%, middle 60% and upper 20% of the standard
normal distribution. The conditional variances for all three cases coincide.
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Figure 3: The conditional samples (upper row) and their conditional copula functions (lower row) from
the bivariate normal with µ = (0, 0) and Σ = σij , where σ11 = σ22 = 1 and σ12 = σ21 = 0.8. The
conditioning is based on the the first coordinate and relates to the lower 20%, middle 60% and upper
20% of the whole population.

Remark 2. The value ‖Σ[0,q] −Σ[q,1−q]‖, for q ≈ 0.198 and some arbitrary matrix norm (e.g. Frobenius
norm) might be used to test how far X is from a multivariate normal distribution. This test is particularly
important, as it shows the impact of the tails on the central part of the distribution, as usually (for
empirical data) the dependence (correlation) structure in the tails significantly increases, revealing non-
normality.

Remark 3. We can also consider more than three states, when clustering the population (e.g. having
5 states we might relate to them as critical, bad, normal, good and outstanding performance, based on
selected benchmark). The ratios, which imply equilibrium state (similar to the one from Definition 1) for
5 and 7 different states are close to

0.027/0.243/0.460/0.243/0.027 and 0.004/0.058/0.246/0.384/0.246/0.058/0.004,

respectively. Those values could be easily computed using results from Lemma 1 and Lemma 2.

4 Equilibrium for monotonic dependance

In the definition of the equilibrium state (Definition 1) we have in fact measured the distance between
conditional covariance matrices to compare the variability and linear dependance structure between the
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groups. As explained in Remark 1, one could use conditional correlation matrices instead of covariance
matrices and focus on the comparison of the linear dependance structure. Of course there are also other
measures of dependance, which could be used to reformulate Definition 1.

Among most popular ones are so called measures of concordance, where Kendall τ and Spearman ρ
are usually picked representatives for two dimensional case (see [12, Section 5] for more details). Instead
of measuring the linear dependence, they focus on the monotone dependence, being invariant to any
strictly monotone transform of a random variable (note that correlation is only invariant wrt. positive
linear transformation).

Thus, instead of covariance matrices Σ[0,q], Σ[q,1−q] and Σ[1−q,1] in (3) we can consider the correspond-
ing matrices of conditional Kendall τ and conditional Spearman ρ, denoted by Στ

[0,q], Σ
τ
[q,1−q], Σ

τ
[1−q,1]

and Σρ

[0,q], Σ
ρ

[q,1−q], Σ
ρ

[1−q,1], respectively. For comparison, we will also consider conditional correlation

matrices, for which we shall use notation Σr
[0,q], Σ

r
[q,1−q] and Σr

[1−q,q].
Unfortunately, the analog of Theorem 1 is not true, if we substitute covariance matrices with the

Spearman ρ or Kendall τ matrices in Definition 3. Because of that we need different kind of notation for
the equilibrium state, as stated in Definition 2.

Definition 2. Let us assume that X is symmetric2 and let κ ∈ {r, ρ, τ}3. We will say that a quasi-global
balance (or quasi-equilibrium state) is achieved in X for κ and q̂ ∈ [0, 1] if

‖Σκ
[0,q̂] − Σκ

[q̂,1−q̂]‖F = inf
q∈(0,0.5)

‖Σκ
[0,q] − Σκ

[q,1−q]‖F. (6)

where ‖ · ‖F is a standard Frobenius matrix norm given by

‖A‖F := tr AAT =

√

√

√

√

n
∑

i=1

n
∑

j=1

|aij |2,

for any n-dimensional matrix A = {aij}i,j=1,...,n.
Similarly as in Definition 1, we will say that a global balance (or equilibrium state) is achieved in X

for κ and q̂ ∈ [0, 1] if the value in (6) is equal to 0.

For transparency, we will write

q̂r = argmin
q∈(0,0.5)

‖Σr
[0,q] − Σr

[q,1−q]‖F, (7)

q̂τ = argmin
q∈(0,0.5)

‖Στ
[0,q] − Στ

[q,1−q]‖F, (8)

q̂ρ = argmin
q∈(0,0.5)

‖Σρ

[0,q] − Σρ

[q,1−q]‖F, (9)

to denote ratios, which imply quasi-equilibrium states given in (6).4

As expected, for X ∼ N (µ,Σ), the values q̂τ and q̂ρ also seem to be very close to 0.2, for almost any
value of µ and Σ. To illustrate this property, we have picked 1000 random covariance matrices {Σi}1000i=1

for n = 45 and computed the values of functions

f i
r(q) = ‖(Σi)r[0,q] − (Σi)r[q,1−q]‖F, (10)

f i
τ (q) = ‖(Σi)τ[0,q] − (Σi)τ[q,1−q]‖F, (11)

f i
ρ(q) = ‖(Σi)ρ[0,q] − (Σi)ρ[q,1−q]‖F. (12)

To do so, for each i ∈ {1, 2, . . . , 1000} we have taken 1.000.000 Monte Carlo sample from X ∼ N (0,Σi)
and computed values of (10), (11) and (12) using MC estimates of the corresponding conditional matrices.
The graphs of f i

r, f
i
τ and f i

ρ for i = 1, 2, . . . , 50 are presented in Figure 4. In Figure 5, we also present
the smoothed histogram function of points {q̂ri }1000i=1 , {q̂τi }1000i=1 and {q̂ρi }1000i=1 , for which the minimum is
attained in (10), (11) and (12) for i = 1, 2, . . . , 1000.

2i.e. X is symmetric wrt. E[X] = (E[X1], . . . , E[Xn]); note that it implies that Σ[0,q] = Σ[1−q,1] for any q ∈ (0, 0.5).
3This will relate to the conditional correlation matrices, Spearman ρ matrices or Kendall τ matrices, respectively.
4For simplicity, we use argmin and assume that the (quasi) equilibrium state exists and is unique.
5With additional assumption that correlation coefficients are bigger than 0.2 and smaller than 0.8, to avoid computation
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Figure 4: The graphs of functions f i
r, f

i
τ and f i

ρ for i = 1, 2, . . . , 50, computed using 1.000.000 sample

from N (0,Σi) and the corresponding estimates of conditional matrices.
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Figure 5: Monte Carlo density functions constructed using points {q̂i}1000i=1 , {q̂τi }1000i=1 and {q̂ρi }1000i=1 . For
each i = 1, 2, . . . , 1000 a 1.000.000 sample from N (0,Σi) was simulated and the corresponding estimates
of conditional matrices were used for computations.

Unfortunately, in general the values q̂τ and q̂ρ defined in (8) and (9) are not constant and independent
of Σ. In particular, if the dependance inside X is very strong, e.g. the vector (X1, X2, . . . , Xn) is almost
comonotone, then the values of q̂τ and q̂ρ might increase substantially.6

To illustrate this property, let us present some theoretical results, involving conditional Spearman ρ
and Kendall τ . For simplicity, till the end of this subsection, we will assume that n = 2.

Then, given X ∼ N (µ,Σ), we know that σ2
12 = σ2

21 = rσ11σ22, where r ∈ [−1, 1] is the correlation
between X1 and X2. It is easy to show (see [9]), that both unconditional and conditional values of
Spearman ρ as well as Kendall τ will depend only on the copula of X7, which is parametrised by the
correlation coefficient. Thus, without loss of generality, instead of considering all µ and Σ, we might
assume that

X = (X1, X2) ∼ N (µ,Σ) where µ = (0, 0) and Σ =

(

1 r
r 1

)

.

for a fixed r ∈ [−1, 1].
Let ρ[p,q](r) and τ[p,q](r) denote the corresponding conditional Spearman ρ and Kendall τ , given

truncation interval B(p, q). Note that ρ[p,q](r) and τ[p,q](r) are odd functions of r.

problems resulting from independence or comonotonicity, respectively (see also Remark 1). Note also that the sign of
correlation coefficient is irrelevant, due to symmetry of X, so without loss of generality, we can assume that the correlation
matrix is positive. Moreover, the values of q̂τ and q̂ρ are invariant wrt. µ, so we can set µ = 0 without loss of generality.

6Note that in our numerical example we have assumed that the correlation for any pair is between 0.2 and 0.8, excluding
extremal cases.

7Note that the (conditional) Spearman ρ and Kendall τ is invariant to any monotone transform of X1 or X2, and so is
the copula function.
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Lemma 3. For all 0 ≤ p < q ≤ 1 and r ∈ (−1, 1),

ρ[p,q](−r) = −ρ[p,q](r) and τ[p,q](−r) = −τ[p,q](r).

Proof. Before we begin the proof, let us recall some basic facts from the copula theory (cf. [12] and
references therein). We will use Cr to denote the Gaussian copula, with parameter r ∈ (−1, 1), which
coincides with the correlation coefficient. Noting, that the copula could be seen as a distribution function
(with uniform margins) let us assume that (U, V ) is a random vector with distribution Cr. We will
denote by Cr

[p,q] the copula of the conditional distribution (U, V ) under the condition U ∈ [p, q], where
0 ≤ p < q ≤ 1. Due to Sklar’s Theorem we get the following description of Cr

[p,q]:

Cr
[p,q]

(

u,
Cr(q, v)− Cr(p, v)

q − p

)

=
Cr((q − p)u+ p, v)− Cr(p, v)

q − p
, u, v ∈ [0, 1]. (13)

Next, it is easy to notice, that the distribution function of (U, 1 − V ) is equal to C−r. Hence the
Gaussian copulas commute with flipping, i.e.

C−r(u, v) = u− Cr(u, 1− v) for u, v ∈ [0, 1].

On the other hand the flipping transforms the conditional distribution (U, V )|U∈[p,q] to (U, 1−V )|U∈[p,q].
Hence we get

C−r
[p,q](u, v) = u− Cr

[p,q](u, 1− v).

Thus basing on [12, Theorem 5.1.9], we conclude

ρ[p,q](−r) = −ρ[p,q](r),

τ[p,q](−r) = −τ[p,q](r),

We recall that the Spearman ρ and Kendall τ of the conditional copula Cr
[p,q] are given by formulas:

ρ[p,q](r) = ρ(Cr
[p,q]) = −3 + 12

∫ 1

0

∫ 1

0

Cr
[p,q](u, v) du dv, (14)

τ[p,q](r) = τ(Cr
[p,q]) = −1 + 4

∫∫

[0,1]2
Cr

[p,q](u, v) dC
r
[p,q](u, v). (15)

To describe their behaviour for small r we will need their Taylor expansions with respect to r.

Proposition 1. For a fixed p, q ∈ (0, 1) (p < q) and r ∈ (−1, 1), such that r is close to 0, we get

ρ[p,q](r) = r
3

(q − p)2π

(

Φ(
√
2x2)− Φ(

√
2x1)− (q − p)

√
π(ϕ(x1) + ϕ(x2))

)

+O(r3), (16)

τ[p,q](r) =
2

3
ρ[p,q](r) +O(r3). (17)

where x1 = Φ−1(p) and x2 = Φ−1(q).

Proof. We will use notation similar to the one introduced in Lemma 3. The proof will be based on two
facts. First, for r = 0 both C and C[p,q] are equal to product copula Π(u, v) := uv, i.e.

C0(u, v) = uv = C0
[p,q](u, v).

Second, the derivative of the distribution function of a bivariate Gaussian distribution having standardised
margins with respect to the parameter r is equal to its density, which implies

∂Cr(u, v)

∂r
=

1

2π
√
1− r2

exp
(

− Φ−1(u)2 +Φ−1(v)2 − 2rΦ−1(u)Φ−1(v)

2(1− r2)

)

.
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We calculate the Taylor expansion of ρ[p,q](r) at r = 0.

ρ[p,q](0) = ρ(Π) = 0.

∂ρ[p,q](0)

∂r
= 12

∫ 1

0

∫ 1

0

∂C0
[p,q](u, v)

∂r
du dv.

The derivative of Cr
[p,q] will be calculated in two steps. First we differentiate formula (13). We get

∂

∂r
Cr

[p,q]

(

u,
Cr(q, v)− Cr(p, v)

q − p

)

+ ∂2C
r
[p,q]

(

u,
Cr(q, v)− Cr(p, v)

q − p

)

1

q − p

(

∂Cr(q, v)

∂r
− ∂Cr(p, v)

∂r

)

=
1

q − p

(

∂Cr((q − p)u+ p, v)

∂r
− ∂Cr(p, v)

∂r

)

.

Next, setting r = 0, we obtain

∂

∂r
C0

[p,q] (u, v) =
1

q − p

(

ϕ
(

Φ−1((q − p)u+ p)
)

− uϕ(Φ−1(q))− (1 − u)ϕ(Φ−1(p))
)

ϕ(Φ−1(v))

Finally, we get

∂ρq,p(0)

∂r
=

12

q − p

∫ 1

0

∫ 1

0

(

ϕ(Φ−1((q − p)u+ p))− uϕ(Φ−1(q))− (1 − u)ϕ(Φ−1(p))
)

ϕ(Φ−1(v)) du dv

=
12

q − p

∫ 1

0

(

ϕ(Φ−1((q − p)u+ p))− uϕ(Φ−1(q))− (1 − u)ϕ(Φ−1(p))
)

du

∫ 1

0

ϕ(Φ−1(v)) dv

=
12

q − p

1

2
√
π

(

1

q − p

1

2
√
π
(Φ(

√
2Φ−1(q)) − Φ(

√
2Φ−1(p))) − 1

2
(ϕ(Φ−1(q)) + ϕ(Φ−1(p)))

)

.

The proof of the Kendall τ case follows from the symmetry
∫∫

C1 dC2 =

∫∫

C2 dC1.

We have

∂τq,p(r)

∂r
= 4

∂

∂r

∫∫

[0,1]2
Cr

[p,q](u, v) dC
r
[p,q](u, v) = 8

∫∫

[0,1]2

∂

∂r
Cr

[p,q](u, v) dC
r
[p,q](u, v).

Setting r = 0 we get

∂τq,p(0)

∂r
= 8

∫∫

[0,1]2

∂

∂r
C0

[p,q](u, v) dC
0
[p,q](u, v) = 8

∫∫

[0,1]2

∂

∂r
C0

[p,q](u, v) du dv =
8

12

∂ρq,p(0)

∂r
.

For κ denoting either ρ or τ , using Proposition 1, we are now ready to compare values of κ[0,q](r)
and κ[q,1−q](r), changing both q ∈ (0, 0.5) and r ∈ (−1, 1). Note that for n = 2 the equilibrium state
corresponding to (9) is achieved, if and only if κ[0,q](r)− κ[q,1−q](r) = 0. In [9, Theorems 4.1 and 4.4], it
was shown that for any fixed r > 0, the conditional copulas Cr

[0,q] are increasing in q while Cr
[q,1−q] are

decreasing in q. Hence the differences

∆ρ(q, r) = ρ[0,q](r) − ρ[q,1−q](r) and ∆τ (q, r) = τ[0,q](r) − τ[q,1−q](r) (18)

are strictly increasing in q and changing the sign. Using Lemma 3 we know, that for each r ∈ (−1, 1),
such that r 6= 0, there exists exactly one q ∈ (0, 0.5) for which ∆ρ(q, r) = 0 and one q ∈ (0, 0.5) for which
∆τ (q, r) = 0. Let

Aκ : (−1, 1) → (0, 0.5), κ = ρ, τ,

be a function, which assigns appropriate q for any r 6= 0, and let Aκ(0) = lim inft→0 Aκ(t)
8. We will now

show that the graphs of Aρ and Aτ are orthogonal to the line r = 0.

8Note, that for r = 0, any q ∈ (0, 0.5) implies equilibrium state, the reason we define A(0) in that way.
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Theorem 2. For r close to 0, we get

Aρ(r) = Aτ (r) +O(r2) = q∗ +O(r2),

where q∗ ≈ 0, 2132413 is a solution of the following equation

(1 − 4q + 6q2)Φ(
√
2Φ−1(q))− q(1 − 6q + 8q2)

√
πϕ(Φ−1(q))− q2 = 0.

Proof. If r = 0, then for any q ∈ (0, 0.5), we get that (18) is equal to 0, so for clarity we might set
Aκ(0) = q∗. Using Lemma 3, without loss of generality, we might assume that r > 0. Due to Proposition
1, for small r, we get

ρ[0,q](r) − ρ[q,1−q](r) = r
3

π
q−2

(

Φ(
√
2Φ−1(q))− q

√
πϕ(Φ−1(q))

)

+O(r3)

− r
3

π
(1− 2q)2

(

1− 2Φ(
√
2Φ−1(q)) − 2(1− 2q)

√
πϕ(Φ−1(q))

)

+O(r3)

= r
3

πq2(1 − 2q)2

(

(1− 4q + 6q2)Φ(
√
2Φ−1(q))− q(1− 6q + 8q2)

√
πϕ(Φ−1(q))− q2

)

+O(r3)

and a similar formula for τ .

In particular, Theorem 2 implies that Aρ(0) = Aτ (0) = q∗. Using basic numerical calculations, we
get for κ denoting ρ or τ

0.213 < Aκ(r) < 0.271,

for any r ∈ (−1, 1). Nevertheless, usually this bond is much tighter, which could already be observed in
our previous numerical example (see e.g. Figure 4). With some easy calculations, we get

0.213 < Aκ(r) < 0.230,

for r ∈ (−0.9, 0.9). The graph of function ∆ρ(q, r) = ρ[0,q](r) − ρ[q,1−q](r) for various fixed values of
q ∈ (0, 0.5) is presented in Figure 6, see also Figure 7 for the corresponding graph of ∆τ .

Remark 4. When we consider the equilibrium state for conditional Spearman ρ matrices (or Kendall
τ), we only need to know the dependance structure of X, given by it’s copula. Thus, we can set any
marginal distributions of X1, . . . , Xn, without changing the equilibrium. This allow us to consider much
more general class of multivariate distributions, for which the 20-60-20 rule will hold.
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Figure 6: The graph of ∆ρ(q, r) = ρ[0,q](r) − ρ[q,1−q](r) as function of r for different values of (fixed) q.
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Figure 7: The graph of ∆τ (q, r) = τ[0,q](r) − τ[q,1−q](r) as function of r for different values of (fixed) q.

5 Abandoning Gaussian world

When we loose the assumption that X ∼ N (µ,Σ), the existence of equilibrium is no longer guaranteed.
A natural question is if for any elliptical distribution the equivalent of 20/60/20 rule holds. In this section
we will discuss this matter shortly.

We say that X has the elliptic distribution if it can be defined in terms of a characteristic function

φX(t) = eit
′µΨ(t′Σt), (19)

where µ is a vector (which coincides with mean vector, if it exists), Σ is a scale matrix (which is pro-
portional to covariance matrix, if it exists) and Ψ is so called characteristic generator of the elliptical
distribution (cf. [6] and references therein for a general survey about elliptic distributions). For simplic-
ity, we will use so called stochastic representation of an elliptic distribution. It is well known (see [6])
that if X has the density, then it is elliptic if and only if it can be presented as

X = µ+
√
ΣRU,

where
√
Σ is any square matrix such that

√
Σ

t√
Σ = Σ (e.g. obtained using Cholesky decomposition), U

is an n-dimensional random vector, uniformly distributed on the unit n-sphere, and R is a nonnegative
random vector, corresponding to the radial density, independent of U . Moreover, we will assume that
the first two moments of R exists, which ensures the existence of mean vector and covariance matrix of
X . Now we can ask, if for given U and R the equilibrium state of X always exists and if it is invariant
wrt. µ and Σ.

Unfortunately, it is easy to show, that the equilibrium state (with covariance matrices) is not always
achieved and the quasi-equilibrium state might strongly depend on Σ, even when we consider only the
class of multivariate t-student distributions (i.e. we can consider appropriate radial distributions and
covariance matrices in Algorithm 1).

On the other hand, if we substitute covariance matrices with correlation matrices in (3), then we are
able to prove the results similar to Theorem 1 for a much more general class of elliptic distribution.

To illustrate this property, we have conducted simple computational experiment, using multivariate
t-student distribution, as it is commonly used by practitioners. Assuming n = 4, for any ν ∈ {2, 3, . . . , 20}
we have picked 100 random matrices Σi

ν and for each i = 1, 2, . . . , 100 we simulated 1.000.000 Monte Carlo
sample, assuming X ∼ tν(0,Σ

i
ν). Next, we have calculated the values of qiν ∈ (0, 0.5), for which (quasi-

)equilibrium state is attained (i.e. for estimates of conditional correlation matrices; see Algorithm 1). In
Figure 8 we present the graph of 0.1, 0.5 and 0.9 quantiles of the sample {qiν}100i=1 for ν = 2, 3, . . . , 20.
The value of q for which (quasi-)equilibrium state is achieved clearly depends on the degrees of freedom
increasing to value 0.198, which coincides with equilibrium state for multivariate normal distribution (i.e.
note that t-student distribution converge to normal distribution, when ν → ∞).
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Algorithm 1 Compute quasi-equilibrium state for elliptic distribution

Require:

n ∈ N+ – dimension
N ∈ N+ – size of Monte Carlo sample
radial.Dist – radial distribution (e.g.

√

χ(n) for multivariate normal)
1: procedure Equilibrium(n,N ,radial.Dist)
2: Generate U : N independent samples from n-dimensional unit sphere (uniform density)
3: Generate R: N independent samples from (univariate) radial.dist
4: Generate Σ = {σij}: n× n scale matrix (proportional to covariance matrix)

5: while
{

mini6=j

(

σ2
ij/|σiiσjj |

)

< 0.2
}

∨
{

maxi6=j

(

σ2
ij/|σiiσjj |

)

> 0.8
}

do

6: Generate (new) Σ = {σij}: n× n scale matrix
7: end while

8: Compute
√
Σ, e.g. using Cholesky decomposition

9: Compute X = {Xik} = (
√
Σ)

′

RU (i.e. matrix n×N ; random sample from elliptic distribution)
10: Define function Dist(q), for q ∈ (0, 0.5)
11: function Dist(q)
12: Compute q1, sample lower q-quantile of {X1k}Nk=1

13: Compute q2 sample lower (1− q)-quantile of {X1k}Nk=1

14: Compute conditional tail sample X1, by selecting all 1 ≤ k ≤ N , for which X1k ≤ q1

15: Compute conditional central sample X2, by selecting all 1 ≤ k ≤ N , for which q1 ≤ X1k ≤ q2

16: Compute Σ[0,q], a (conditional) covariance matrix of X1

17: Compute Σ[q,1−q], a (conditional) covariance matrix of X2

18: Compute d = ‖Σ[0,q] − Σ[q,1−q]‖F
19: return d
20: end function

21: Compute q̂ = argmin0≤q≤0.5 Dist(q)
22: return q̂
23: end procedure

14
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