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A NEW HARTOGS TYPE EXTENSION THEOREM FOR

THE CROSS-LIKE OBJECTS

ARKADIUSZ LEWANDOWSKI

Abstract. The main result of the paper is a new Hartogs type exten-
sion theorem for the A -crosses, which generalizes the extension theorem
for the (N, k)-crosses (see [6]), as well as the classical Cross Theorem
(see [1]).

1. Introduction

The celebrated Hartogs theorem ([3]) states that every separately holo-

morphic function in several complex variables is necessarily holomorphic as

a function of all variables. This over one hundred years old deep result has

been generalized in many directions. One of them leads to the theory of

the extension of separately holomorphic functions defined on the so-called

crosses ([1]). The newest results in this area concern the (N, k)-crosses ([6])

and the generalized (N, k)-crosses ([9],[13]). We introduce the A -crosses,

which generalize the (N, k)-crosses in a different way than the generalized

(N, k)-crosses: for the first time the cross-like objects admit the different

sizes of the branches - for the details see Definition 3.3.

When the cross-like objects are concerned, two basic questions appear in

a natural way. The first question is, whether all separately holomorphic func-

tions defined on such objects extend to some open neighborhood of them. If

the answer is positive, we can consider the problem of finding a nice descrip-

tion of the envelope of holomorphy of the cross-like object (for instance, in

terms of the relative extremal function; see for example the case of (N, k)-

crosses, [6]). Our Main Theorem (Theorem 3.8) says that the envelope of

holomorphy of the A -cross is exactly the envelope of holomorphy of some
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corresponding classical 2-fold cross containing it, if only we exclude some

“bad” case. Concerning the second question, in Section 4 we present how

various such descriptions can be.

The paper was partially written during the author’s stay at the Carl von

Ossietzky Universität Oldenburg. The author would like to express his grat-

itude to Professor Peter Pflug for his constant help and inspiring discussions.

The author also owes thanks to Professor Marek Jarnicki for his commitment

and many valuable remarks.

2. Prerequisites and notations

The natural objects treated in this article are Riemann regions. The

interested reader is asked to consult [4] for a wide exposition of the theory of

Riemann regions. In the present paper PLP(X) stands for the family of all

pluripolar subsets of an arbitrary Riemann region X and O(X) is the space

of all holomorphic functions on X; furthermore, by PSH(X) we will denote

the family of all plurisubharmonic functions on X.

Definition 2.1 ([7], Chapter 3). Let X be a Riemann region over Cn and

let A ⊂ X. The relative extremal function of A with respect to X is the upper

semicontinuous regularization h⋆A,X of the function

hA,X := sup{u : u ∈ PSH(X), u ≤ 1, u|A ≤ 0}.

Definition 2.2 ([7], Chapter 3). We say that a set A ⊂ X is pluriregu-

lar at a point a ∈ A if h⋆A,U (a) := h⋆A∩U,U (a) = 0 for any open neighborhood

U of a. Define

A⋆ = A⋆,X := {a ∈ A : A is pluriregular at a}.

We say that A is locally pluriregular if A 6= ∅ and A is pluriregular at each

of its points, i.e. ∅ 6= A ⊂ A⋆.

It is a simple observation that if A is locally pluriregular, then h⋆A,X ≡

hA,X . In that case we shall omit the star when using the relative extremal

function. For a good background on the topic of the relative extremal func-

tion we refer the reader to [7].
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3. A -crosses and the main result

Let Dj be a Riemann domain over Cnj and let ∅ 6= Aj ⊂ Dj for j =

1, . . . , N, N ≥ 2.

For k ∈ {1, . . . , N} let I(N, k) := {α = (α1, . . . , αN ) ∈ {0, 1}N : |α| = k},

where |α| := α1 + . . .+ αN .

Put

Xα,j :=

{

Dj , if αj = 1

Aj , if αj = 0
, Xα :=

N
∏

j=1

Xα,j .

For an α ∈ I(N, k) such that αr1 = . . . = αrk = 1, αi1 = . . . = αiN−k
= 0,

where r1 < . . . < rk and i1 < . . . < iN−k, put

Dα :=
k
∏

s=1

Drs , Aα :=
N−k
∏

s=1

Ais .

For every α ∈ I(N, k) and every a = (ai1 , . . . , aiN−k
) ∈ Aα define the

mapping

ia,α = (ia,α,1, . . . , ia,α,N ) : Dα → Xα,

ia,α,j(z) :=

{

zj , if αj = 1

aj , if αj = 0
, j = 1, . . . , N, z = (zr1 , . . . , zrk) ∈ Dα

(if αj = 0, then j ∈ {i1, . . . , iN−k} and if αj = 1, then j ∈ {r1, . . . , rk}).

In [6] Jarnicki and Pflug introduced the so-called (N, k)-crosses.

Definition 3.1. An (N, k)-cross is defined as

XN,k = XN,k((Aj ,Dj)
N
j=1) :=

⋃

α∈I(N,k)

Xα.

The envelope of an (N, k)-cross is defined as

X̂N,k = X̂N,k((Aj ,Dj)
N
j=1) :=

{(z1, . . . , zN ) ∈ D1 × . . . ×DN :

N
∑

j=1

h⋆A⋆
j ,Dj

(zj) < k}.

In particular, if all Aj’s are locally pluriregular, then XN,k ⊂ X̂N,k.

Observe that for k = 1 the above definition leads to the classical N -fold

crosses ([5]). In the case where N = 2 sometimes it will be more convenient

to use the notation X(A1, A2;D1,D2) := X2,1((Aj ,Dj)j=1,2). In the sequel

we shall intensively use the following
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Theorem 3.2 ([6]). For every function f, separately holomorphic on XN,k

(cf. Definition 3.5), there exists an f̂ ∈ O(X̂N,k) such that f̂ = f on XN,k

and f̂(X̂N,k) ⊂ f(XN,k).

After the (N, k)-crosses the question arises, in which direction should we

go to consider more general objects. In [9] the so-called generalized (N, k)-

crosses are concerned. Here we shall introduce the A -crosses.

Definition 3.3. Fix a natural number N ≥ 2. For any ∅ 6= S ⊂ {1, . . . , N}

we choose some system of multiindices α(s)1, . . . , α(s)ls ∈ I(N, s), s ∈ S. For

s ∈ {1, . . . , N}\S put ls = 0. In the set {α(s)r : s ∈ S, r = 1, . . . , ls} consider

the lexicographical order and denumarate its elements with respect to this

order as α1, . . . , αl1+...+lN . Build the matrix A := (αi
j)j=1,...,N,i=1,...,l1+...+lN

and define the A -cross

Q(A ) = Q(αi
j) = Q(αi

j)((Aj ,Dj)
N
j=1) :=

⋃

s∈S

ls
⋃

r=1

Xα(s)r .

We say that the sets Xα(s)r are branches of Q(A ).

The A -cross is said to be reduced, if there is no nontrivial chain (with

respect to the lexicographical order) in the set {α(s)r : r = 1, . . . , ls, s ∈ S}

(i.e. there is no situation where some branch Xα(s1)r1 is essentially contained

in some another branch Xα(s2)r2 ).

From now on, without loss of generality, we shall consider only the reduced

A -crosses.

Example 3.4. For N = 2 we have the following A -crosses:

Q( 1 0 ) = D1 ×A2,

Q( 0 1 ) = A1 ×D2,

Q
(

0 1
1 0

)

= (A1 ×D2) ∪ (D1 ×A2) = X2,1((Aj ,Dj)j=1,2),

Q( 1 1 ) = D1 ×D2 = X2,2((Aj ,Dj)j=1,2).

For N = 3 we have the following A -crosses (up to permutations of variables):

Q( 0 1 1 ) = A1 ×D2 ×D3,

Q
(

0 1 1
1 0 0

)

= (A1×D2×D3)∪(D1×A2×A3) = X(A1, A2×A3;D1,D2×D3),

Q
(

0 1 1
1 0 1

)

= (A1×D2×D3)∪(D1×A2×D3) = X2,1((Aj ,Dj)j=1,2)×D3 =

X(A1, A2 ×D3;D1,D2 ×D3),
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Q

(

0 1 1
1 0 1
1 1 0

)

= X3,2((Aj ,Dj)j=1,2,3),

Q( 0 0 1 ) = (A1 ×A2 ×D3),

Q
(

0 0 1
1 0 0

)

= (A1 ×A2 ×D3) ∪ (D1 ×A2 ×A3),

Q

(

0 0 1
0 1 0
1 0 0

)

= X3,1((Aj ,Dj)j=1,2,3),

Q( 1 1 1 ) = (D1 ×D2 ×D3) = X3,3((Aj ,Dj)j=1,2,3).

Observe that in this new notation the set of (N, k)-crosses equals the set

of those A -crosses, for which the rows of the defining matrix A are exactly

the elements of I(N, k) ordered lexicographically. The notion of separate

holomorphicity is completely in the spirit of (N, k)-crosses (see [6]).

Definition 3.5. We say that a function f : Q(αi
j) → C is separately

holomorphic on Q(αi
j) if for every s ∈ {1, . . . , N} with nonzero ls, every

j ∈ {1, . . . , ls}, and for every a ∈ Aα(s)j the function

Dα(s)j ∋ z 7→ f(ia,α(s)j (z))

is holomorphic.

As always we ask whether any separately holomorphic function on an

A -cross Q can be extended holomorphically to some open neighborhood of

Q. The second question is, whether we can effectively describe the envelope

of holomorphy of an A -cross. Note that usually A -crosses are not open.

However, if any separately holomorphic function on an A -cross Q extends

holomorphically to some open neighborhood of Q, we may speak of envelope

of holomorphy of that naighborhood. Therefore, the problem of finding the

envelope of holomorphy of a given A -cross should not lead to confusions.

As the following example shows, we need to avoid some “pathological”

situation.

Example 3.6. Take

Q := Q
(

0 0 1
1 0 0

)

= (A1 ×A2 ×D3) ∪ (D1 ×A2 ×A3),

Consider on Q the function f(z1, z2, z3) := g(z2)h(z1, z3), where h is some

separately holomorphic function on X := X(A1, A3;D1,D3) (possibly con-

stant; it extends holomorphically to X̂) and g is some “wild” function on
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A2. Then f is separately holomorphic on Q. It may be, however, very far

away from being holomorphically extendible (or just holomorphic, in the case

where Aj = Dj, j = 1, 2, 3).

Example 3.7. Consider

Q := Q(1 · · · 1) = XN,N((Aj ,Dj)
N
j=1) = D1 × . . . ×DN .

Then every separately holomorphic function on Q is authomatically holo-

morphic on Q. If in addition all Dj ’s are domains of holomorphy, then so

is Q.

The following theorem - our Main Theorem - shows that if we exclude

the situation where there exists some k ∈ {1, . . . , N} such that for any

s ∈ {1, . . . , N} with nonzero ls and for any α(s)r, r = 1, . . . , ls we have

α(s)rk = 0 (in other words, we assume the inclusion XN,1((Aj ,Dj)
N
j=1) ⊂

Q(αi
j)((Aj ,Dj)

N
j=1)), then we may describe the envelope of holomorphy of

an A -cross as the envelope of holomorphy of some corresponding 2-fold cross.

Theorem 3.8. Let Dj be a Riemann domain of holomorphy over Cnj and let

Aj ⊂ Dj be locally pluriregular, j = 1, . . . , N. Put Q := Q(αi
j)((Aj ,Dj)

N
j=1).

Assume that XN,1((Aj ,Dj)
N
j=1) ⊂ Q. Then there exist an m0 ∈ {1, . . . , N},

a domain of holomorphy G ⊂ D1× . . .×Dm0−1×Dm0+1× . . .×DN , a locally

pluriregular subset B ⊂ G, and a 2-fold classical cross X = X(Am0
, B;Dm0

, G)

containing τ−1(QN ;l1,...,lN (α
i
j)), where τ is a mapping which sends a point

(zm0
, z1, . . . , zm0−1, zm0+1, . . . , zN ) ∈ Dm0

×D1×. . .×Dm0−1×Dm0+1×. . .×

DN to the point (z1, . . . , zN ) ∈ D1 × . . . ×DN , such that for every function

f ∈ F := Os(Q) there exists a unique function f̂ ∈ O(X̂) with f̂ = f ◦ τ on

τ−1(Q), i.e. Q̂ := τ(X̂) is the envelope of holomorphy of Q.

Proof. The proof is by induction on N. For N = 2 the conclusion is obvious

(see Example 3.4). Suppose now that the conclusion holds true for N − 1

with some N ≥ 3 and consider Q(αi
j).

Let K be the set of those k ∈ {1, . . . , N} such that for any s ∈ {1, . . . , N}

with nonzero ls and for any α(s)r, r = 1, . . . , ls we have α(s)rk = 1. Two cases

have to be considered.

Case 1. There is some k0 ∈ K.

Observe that if K = {1, . . . , N}, then Q = D1 × . . . × DN and we take



A NEW HARTOGS... 7

m0 = 1, G = B = D2 × . . .×DN ,X = X̂ = D1 × . . .×DN .

Therefore, we may assume that there is some m0 ∈ {1, . . . , N} \ K.

To simplify the notation we assume that k0 = N ∈ K (the proof in

the other cases goes along the same lines). Then we see that Q(αi
j) =

Q′ ×DN , where Q′ is some A -cross, with the defining matrix of dimension

(l′1 + . . . + l′(N−1)) × (N − 1). By the inductive assumption and Terada’s

theorem ([12]), for every function from F , the function f ◦ τ extends holo-

morphically to X̂(Am0
, B′;Dm0

, G′) × DN with some domain of holomor-

phy G′ ⊂ D1 × . . . × Dm0−1 × Dm0+1 × . . . × DN−1 and locally plurireg-

ular set B′ ⊂ G′. It is left to observe that X̂(Am0
, B′;Dm0

, G′) × DN =

X̂(Am0
, B′ ×DN ;Dm0

, G′ ×DN ).

Case 2. The set K is empty.

We use the following notation: for any s with nonzero ls and any r ∈

{1, . . . , ls} write the multiindex α(s)r as (α(s)r1, α(s)
r
0), where α(s)r0 is a suit-

able multiindex from {0, 1}N−1.

Fix a point a1 ∈ A1 and consider the family of functions F ′ := {f(a1, ·) :

f ∈ F}. Observe that the functions from F ′ are defined on an A -cross

Q′(α′i
j ), where the defining matrix (α′i

j )j=1,...,N−1,i=1,...,l′
1
+...+l′

N−1
comes from

the set of all α(s)r0’s after ordering its elements with respect to the lexico-

graphical order. The A -cross Q′(α′i
j ), however, may not be reduced. Never-

theless, the cancelling all the branches of it, which are contained in another

ones, does not change anything here, so we may assume without loss of gen-

erality that Q′(α′i
j ) is reduced. By the inductive assumption (observe that all

assumptions of the theorem are now satisfied), for any function g ∈ F ′, the

function g ◦ σ extends holomorphically to X̂′ = X̂′(Am′
0
, B′;Dm′

0
, G′) with

some domain of holomorphy G′ ⊂ D2× . . .×Dm′
0
−1×Dm′

0
+1× . . .×DN and

locally pluriregular set B′ ⊂ G′, where σ : Dm′
0
×D2×. . .×Dm′

0
−1×Dm′

0
+1×

. . .×DN → D2 × . . .×DN sends a point (zm′
0
, z2, . . . , zm′

0
−1, zm′

0
+1, . . . , zN )

to the point (z2, . . . , zN ).

Furthermore, there exists a minimal number n0 ∈ {1, . . . , l1+. . .+lN} such

that for every n′ ≥ n0 there is αn′

1 = 1 while for n′′ < n0 we have α
′′

1 = 0. Fix

a point z′ ∈ Q′′ := Q′′(α′′i
j ), where the matrix (α′′i

j )j=1,...,N−1,i=1,...,l′′
1
+...+l′′

N−1

comes from the set {α(s)n
′

0 : n′ ≥ n, ls 6= 0} after ordering its elements with

respect to the lexicographical order. Also, similarly as above, we may assume
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that Q′′ is reduced. Consider the family of functions F ′′ := {f(·, z′) : f ∈ F}.

Then every function from F ′′ is holomorphic on D1.

Observe that Q′′ ⊂ σ(X̂′), since by the construction, for any row α′′i of

the matrix (α′′i
j ) there exists some row α′k of the matrix (α′i

j ) which is sub-

sequent to α′′i with respect to the lexicographical order (i.e. any branch of

Q′′ is contained in some branch of Q′(α′i
j )). Now the conclusion holds true

because of Theorem 3.2 applied to the 2-fold cross (A1×σ(X̂′))∪ (D1 ×Q′′)

and m0 = 1, G = σ(X̂′), B = Q′′, τ = id are good for our purpose. �

Remark 3.9. Observe that in the above theorem (and its proof) the set of

m0’s that we can distinct can have more than one element. However, since X̂

is the envelope of holomorphy of Q, the result must be the same, no matter

which m0 we distinct.

To see this, observe that if X̂1, X̂2 are two envelopes of Q constructed

for two different m0’s, then for any function f ∈ O(X̂1) there exists an

f̃ ∈ O(X̂2) with f̃ = f on the connected componnent of X̂1 ∩ X̂1 containing

Q (notice that Q is connected - this follows from the proof of Theorem 3.8

and main result from [9]).

Corollary 3.10. Let s,N1, . . . , Ns ∈ N, s,N1, . . . , Ns ≥ 2, let Ddj be a Rie-

mann domain of holomorphy over C
ndj and Adj ⊂ Ddj be locally plurireg-

ular, j = 1, . . . , Nd, d = 1, . . . , s. Let Q = Q1 × . . . × Qs, where Qd

is an A -cross spread over Dd1 × . . . × DdNd
, d = 1, . . . , s. Assume that

XN1+...+Ns,1((Aj ,Dj)
N1+...+Ns

j=1 ) ⊂ Q. Then the envelope of holomorphy Q̂

of Q equals X̂s,1((Qj, Q̂j)
s
j=1).

Proof. Without loss of generality we may assume that Qj is reduced, j =

1, . . . , s.

Fix an f ∈ F := Os(Q). Observe that then for any j ∈ {1, . . . , s} and for

any point (z1, . . . , zj−1, zj+1, . . . , zs) ∈ Q1 × . . . ×Qj−1 ×Qj+1 × . . . ×Qs

the function f(z1, . . . , zj−1, ·, zj+1, . . . , zs) extends holomorphically to Q̂j.

Therefore, any function from F may be treated as a separately holomorphic

function on Xs,1((Qj, Q̂j)
s
j=1), which finishes the proof. �

Remark 3.11. Let Q be as in Theorem 3.8 and let X̂ be constructed via

Theorem 3.8. We may consider the extension theorem for Q with analytic

singularities given by the analytic subset of positive pure codimension of X̂.



A NEW HARTOGS... 9

Using the analogous argument to the one given in the proof of Theorem 2.12

from [9] we can state and prove the extension theorem for A -crosses with

analytic singularities, parallel to Theorem 2.12 (case F = ∅) therein.

4. “Nice” descriptions and some geometry

We know that in the context of (N, k)-crosses and generalized (N, k)-

crosses, their envelopes of holomorphy have a nice description in terms of

the relative extremal function of the set Aj with respect to Dj. For the

A -crosses the existence of such description is more subtle problem. For

N ∈ {2, 3} the situation is simple, as in this case the A -crosses which are

interesting from the point of view of Theorem 3.8 (i.e. those which contain

X2,1((Aj ,Dj)j=1,2),X3,1((Aj ,Dj)j=1,2,3), respectively) give nothing new in

comparison with “old” crosses (see Example 3.4). However, already in the

case N = 4 such descriptions can be various.

Example 4.1. Let N = 4. Let Dj ⊂ Cnj be a hyperconvex domain and let

Aj ⊂ Dj be compact, locally pluriregular, and locally L-regular (see [11]),

j = 1, . . . , 4. Consider the A -crosses interesting from the point of view of

Theorem 3.8. A straightforward computation shows that we have to consider

exactly nine nontrivial (that is, different from the (4, k)−crosses) cases here

(up to permutations of variables):

Case 1.

Q1 := Q

(

0 0 0 1
0 1 1 0
1 0 0 0

)

=
(A1 × A2 × A3 ×D4)∪
(A1 ×D2 ×D3 ×A4)∪
(D1 × A2 × A3 ×A4).

Then after some calculations we conclude that

Q̂1 = {(z1, z2, z3, z4) ∈ D1 ×D2 ×D3 ×D4 : hA1,D1
(z1) + hA4,D4

(z4)+

max{hA2,D2
(z2), hA3,D3

(z3)} < 1}.

Case 2.

Q2 := Q

(

0 0 0 1
1 0 1 0
1 1 0 0

)

=
(A1 × A2 × A3 ×D4)∪
(D1 × A2 ×D3 ×A4)∪
(D1 ×D2 × A3 ×A4).



10 ARKADIUSZ LEWANDOWSKI

Then

Q̂2 = {(z1, z2, z3, z4) ∈ D1 ×D2 ×D3 ×D4 : hA4,D4
(z4)+

max{hA1,D1
(z1), hA2,D2

(z2) + hA3,D3
(z3)} < 1}.

Case 3.

Q3 := Q





0 0 0 1
0 1 1 0
1 0 1 0
1 1 0 0



 =

(A1 ×A2 ×A3 ×D4)∪
(A1 ×D2 ×D3 × A4)∪
(D1 ×A2 ×D3 × A4)∪
(D1 ×D2 ×A3 × A4).

The envelope of holomorphy of Q3 is of the form

{(z1, z2, z3, z4) ∈ X̂3,2((Aj ,Dj)
3
j=1)×D4 :

hA4,D4
(z4) + h

A1×A2×A3,X̂3,2((Aj ,Dj)3j=1
) < 1}.

Using Proposition 4.4 below we see that here the desired description is given

by

Q̂3 =
{

(z1, z2, z3, z4) ∈ D1 ×D2 ×D3 ×D4 : hA4,D4
(z4)+

max
{1

2
(hA1,D1

(z1)+ hA2,D2
(z2) +hA3,D3

(z3)), max
j=1,2,3

{hAj ,Dj
(zj)}

}

< 1
}

.

Case 4.

Q4 := Q





0 0 1 1
0 1 0 1
1 0 0 1
1 0 1 0



 =

(A1 ×A2 ×D3 ×D4)∪
(A1 ×D2 ×A3 ×D4)∪
(D1 ×A2 ×A3 ×D4)∪
(D1 ×A2 ×D3 × A4).

Take a function f ∈ F . Observe that:

• For any fixed point a2 ∈ A2, the function f(·, a2, ·) is holomorphic on

X̂3,2((Aj ,Dj)j=1,3,4). Moreover, for any point (z1, z3, z4) ∈ A1 × A3 × D4,

the function f(z1, ·, z3, z4) is holomorphic on D2. Therefore, using classical

cross theorem (see [1]), we conclude that the envelope of holomorphy of Q4

equals (up to permutation of variables)

{(z2, z1, z3, z4) ∈ D2 × X̂3,2((Aj ,Dj)j=1,3,4) :

hA2,D2
(z2) + h⋆

A1×A3×D4,X̂3,2((Aj ,Dj)j=1,3,4)
(z1, z3, z4) < 1}.
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We shall prove the following

Claim.

h⋆
A1×A3×D4,X̂3,2((Aj ,Dj)j=1,3,4)

(z1, z3, z4) =

max{hA1,D1
(z1), hA3,D3

(z3), hA1,D1
(z1) + hA3,D3

(z3) + hA4,D4
(z4)− 1}

for (z1, z3, z4) ∈ X̂3,2((Aj ,Dj)j=1,3,4).

Proof of Claim. The inequality ≥ is obvious as the right-hand side is from

the defining family for the left-hand side. In order to prove the equality,

we may assume that Dj is relatively compact and strongly pseudoconvex,

j = 1, . . . , 4 (use Proposition 3.2.25 from [7]).

Choose an increasing sequence (Kj)
∞
j=1 of holomorphically convex locally

L-regular compacta in D4 containing A4 and such that
⋃∞

j=1Kj = D4 (this

is possible by the existence of an exhausting sequence of holomorphically

convex compacta in D4 and using [14]; see also [10]). Put

Ls(z1, z3, z4) := h⋆
A1×A3×Ks,X̂3,2((Aj ,Dj)j=1,3,4)

(z1, z3, z4)

for s ∈ N and (z1, z3, z4) ∈ X̂3,2((Aj ,Dj)j=1,3,4). Observe that the functions

Ls are continuous (use [11]). Moreover, we have the equality (ddcLs)
n = 0

on the set X̂3,2((Aj ,Dj)j=1,3,4) \ (A1 ×A3 ×Ks) =: Vs, s ∈ N, where (ddc)n

is the complex Monge-Ampère operator ([2]).

Furthermore, for any z0 ∈ ∂Vs there is

lim inf
Vs∋z→z0

(max{hA1,D1
(z1), hA3,D3

(z3),

hA1,D1
(z1) + hA3,D3

(z3) + hA4,D4
(z4)− 1} − Ls(z1, z3, z4)) ≥ 0,

and, by the domination principle (Corollary 3.7.4 from [8]),

h⋆
A1×A3×D4,X̂3,2((Aj ,Dj)j=1,3,4)

(z1, z3, z4) ≤ Ls(z1, z3, z4) =

max{hA1,D1
(z1), hA3,D3

(z3), hA1,D1
(z1) + hA3,D3

(z3) + hA4,D4
(z4)− 1}

for s ∈ N and (z1, z3, z4) ∈ X̂3,2((Aj ,Dj)j=1,3,4), from which follows the

conslusion. �
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Making use of the above claim we conclude that our description is given

by

Q̂4 = {(z1, z2, z3, z4) ∈ D1 ×D2 ×D3 ×D4 : hA2,D2
(z2)+

max{hA1,D1
(z1), hA3,D3

(z3), hA1,D1
(z1)+hA3,D3

(z3)+hA4,D4
(z4)−1} < 1}.

Case 5.

Q5 := Q







0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0






=

(A1 ×A2 ×D3 ×D4)∪
(A1 ×D2 ×A3 ×D4)∪
(A1 ×D2 ×D3 × A4)∪
(D1 ×A2 ×A3 ×D4)∪
(D1 ×A2 ×D3 × A4).

Here we have

Q̂5 = {(z1, z2, z3, z4) ∈ D1 ×D2 ×D3 ×D4 : hA1,D1
(z1) + hA2,D2

(z2)+

max{hA3,D3
(z3) + hA4,D4

(z4)− 1, 0} < 1}.

Case 6.

Q6 := Q

(

0 0 1 1
1 0 0 1
1 1 0 0

)

=
(A1 × A2 ×D3 ×D4)∪
(D1 × A2 × A3 ×D4)∪
(D1 ×D2 × A3 ×A4).

Take a function f ∈ F . Observe that:

• For any fixed point a2 ∈ A2 the function f(·, a2, ·) is holomorphic on

the set ( ̂(A1 ×D3) ∪ (D1 ×A3))×D4. Moreover, for any point (z1, z3, z4) ∈

D1 ×A3 × A4, the function f(z1, ·, z3, z4) is holomorphic on D2. Therefore,

using classical cross theorem, we conclude that the envelope of holomorphy

of Q6 equals (up to permutation of variables)

{(z2, z1, z3, z4) ∈ D2 × ( ̂(A1 ×D3) ∪ (D1 ×A3))×D4 : hA2,D2
(z2)

+ h⋆
D1×A3×A4,( ̂(A1×D3)∪(D1×A3))×D4

(z1, z3, z4) < 1}.

• On the other hand, for any point (z1, z3) ∈ D1×A3, the function f(z1, ·, z3, ·)

is holomorphic on ̂(A2 ×D4) ∪ (D2 ×A4). Moreover, for any point (z2, z4) ∈

A2×D4, the function f(·, z2, ·, z4) is holomorphic on ̂(A1 ×D3) ∪ (D1 ×A3).
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Using once again classical cross theorem, we see that the envelope of holo-

morphy of Q equals (up to permutation of variables)

{(z2, z4, z1, z3) ∈ ̂(A2 ×D4) ∪ (D2 ×A4)× ̂(A1 ×D3) ∪ (D1 ×A3) :

h⋆
D1×A3, ̂(A1×D3)∪(D1×A3)

(z1, z3) + h⋆
A2×D4, ̂(A2×D4)∪(D2×A4)

(z2, z4) < 1}.

From the above bullets follows that any arbitrary point (z1, z2, z3, z4) ∈

D1 ×D2 ×D3 ×D4 satisfies the following system of conditions:

hA2,D2
(z2) + hA4,D4

(z4) < 1,(4.1)

hA1,D1
(z1) + hA3,D3

(z3) < 1,(4.2)

h⋆
D1×A3, ̂(A1×D3)∪(D1×A3)

(z1, z3) + h⋆
A2×D4, ̂(A2×D4)∪(D2×A4)

(z2, z4) < 1(4.3)

iff it satisfies the following system of conditions:

hA2,D2
(z2) + hA4,D4

(z4) < 1,(4.4)

hA1,D1
(z1) + hA3,D3

(z3) < 1,(4.5)

hA2,D2
(z2) + h⋆

D1×A3, ̂(A1×D3)∪(D1×A3)
< 1.(4.6)

We shall prove the following

Claim.

h⋆
A2×D4, ̂(A2×D4)∪(D2×A4)

(z2, z4) = hA2,D2
(z2)

for (z2, z4) ∈ ̂(A2 ×D4) ∪ (D2 ×A4).

Proof of Claim. Observe that the inequality ≥ is evident. Suppose, seeking

a contradiction, that there exists a point (z02 , z
0
4) ∈

̂(A2 ×D4) ∪ (D2 ×A4),

and numbers α, β ∈ (0, 1) such that

α = h⋆
A2×D4, ̂(A2×D4)∪(D2×A4)

(z02 , z
0
4) > hA2,D2

(z02) = α− β.

We know (Proposition 4.5.2 from [8]) that there exists a z03 ∈ D3 such that

hA3,D3
(z03) = 1− α.

Finally, take any z01 ∈ A1. Then

1− α = hA3,D3
(z03) ≤ h⋆

D1×A3, ̂(D1×A3)∪(A1×D3)
(z01 , z

0
3)

≤ h
A1×A3, ̂(D1×A3)∪(A1×D3)

(z01 , z
0
3) = hA1,D1

(z01) + hA3,D3
(z03) = 1− α.

Therefore, h⋆
D1×A3, ̂(D1×A3)∪(A1×D3)

(z01 , z
0
3) = 1−α. Observe that in this situ-

ation the point (z01 , z
0
2 , z

0
3 , z

0
4) satisfies the conditions (4.1), (4.2), (4.4), (4.5),
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and (4.6), while it does not satisfy the condition (4.3), which is a contradic-

tion. �

Making use of the above claim we conclude that the description under our

interest is:

Q̂6 = {(z1, z2, z3, z4) ∈ D1×D2×D3×D4 : max{hA1,D1
(z1)+hA3,D3

(z3),

hA2,D2
(z2) + hA4,D4

(z4), hA2,D2
(z2) + hA3,D3

(z3)} < 1}.

Case 7.

Q7 := Q





0 0 1 1
0 1 1 0
1 0 0 1
1 1 0 0



 =

(A1 ×A2 ×D3 ×D4)∪
(A1 ×D2 ×D3 × A4)∪
(D1 ×A2 ×A3 ×D4)∪
(D1 ×D2 ×A3 × A4).

Here we have

Q̂7 = {(z1, z2, z3, z4) ∈ D1 ×D2 ×D3 ×D4 :

max{hA2,D2
(z2) + hA4,D4

(z4), hA1,D1
(z1) + hA3,D3

(z3)} < 1}.

Case 8.

Q8 := Q

(

0 1 1 1
1 0 0 1
1 1 0 0

)

=
(A1 ×D2 ×D3 ×D4)∪
(D1 ×A2 × A3 ×D4)∪
(D1 ×D2 × A3 × A4).

Here we have

Q̂8 = {(z1, z2, z3, z4) ∈ D1 ×D2 ×D3 ×D4 : hA1,D1
(z1)+

max{hA3,D3
(z3),max{hA2,D2

(z2) + hA4,D4
(z4)− 1, 0}} < 1}.

Case 9.

Q9 := Q





0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 0



 =

(A1 ×D2 ×D3 ×D4)∪
(D1 × A2 × A3 ×D4)∪
(D1 × A2 ×D3 ×A4)∪
(D1 ×D2 × A3 ×A4).

The envelope of holomorphy of Q9 is of the form

{(z1, z2, z3, z4) ∈ D1 ×D2 ×D3 ×D4 :

hA1,D1
(z1) + h⋆

X3,1((Aj ,Dj)3j=1
),D1×D2×D3,

< 1}.
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By Proposition 4.6 below we get the following description:

Q̂9 = {(z1, z2, z3, z4) ∈ D1 ×D2 ×D3 ×D4 : hA1,D1
(z1)+

1

2
(hA2,D2

(z2) + hA3,D3
(z3) + hA4,D4

(z4)− 1) < 1}.

After the above example we could possibly expect that any set which can

be described in a similar way as all envelopes of holomorphy from the above

example, must be an envelope of holomorphy of certain A -cross. This is

however not the case. For instance, let N = 4 and keep the assumptions

from Example 4.1. Put

Q̃ := {(z1, z2, z3, z4) ∈ D1 ×D2 ×D3 ×D4 : max{hA2,D2
(z2) + hA4,D4

(z4),

hA1,D1
(z1)+hA2,D2

(z2)+hA3,D3
(z3), hA1,D1

(z1)+hA3,D3
(z3)+hA4,D4

(z4)} < 1}.

It follows from some simple but a little bit tedious calculations that there is

no A -cross Q with the defining matrix of dimension (l1 + l2 + l3 + l4) × 4

such that the set Q̃ is the envelope of holomorphy of Q.

As the following two examples show (and so the previous one), if we

consider “thin” A -cross (in the sense that there are a few of Dj ’s in each

of its branches) we should expect rather “small” envelope of holomorphy of

such object, while in the situation where our A -cross is “fat” (a lot of Dj ’s

in each of its branches), then we obtain quite “big” envelope of holomorphy.

Example 4.2 (cf. Example 4.1, Case 2). Let N > 3 be arbitrary. Keep the

assumptions of Theorem 3.8. Consider the A -cross Q′ := Q(A ), where the

matrix A = (αi
j)j=1,...,N,i=1,...N−1 is as follows















0 · · · 0 0 0 1
0 · · · 0 1 1 0
0 · · · 1 0 1 0
...

...
...

...
...

1 · · · 0 0 1 0















.
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Then

Q̂′ = {(z1, . . . , zN ) ∈ D1 × . . .×DN : hAN ,DN
(zN )+

max{hAN−1,DN−1
(zN−1),

N−2
∑

j=1

hAj ,Dj
(zj)} < 1}.

We see that the envelope of holomorphy of Q′ is in general essentially con-

tained in the set X̂N,2((Aj ,Dj)
N
j=1), no matter how large the N is.

Example 4.3 (cf. Example 4.1, Case 8). Let N > 3 be arbitrary. Keep the

assumptions of Theorem 3.8. Consider the A -cross Q′′ := Q(A ), where the

matrix A = (αi
j)j=1,...,N,i=1,...N−1 is as follows















0 1 0 1 · · · 1
0 1 1 0 · · · 1
...

...
...

...
. . .

...
0 1 1 1 · · · 0
1 0 1 1 · · · 1















.

Then

Q̂′′ = {(z1, . . . , zN ) ∈ D1 × . . .×DN : hA2,D2
(z2)+

max{hA1,D1
(z1),max{

N
∑

j=3

hAj ,Dj
(zj)−N + 3, 0}} < 1}.

Observe that the above set contains

(X̂2,1((Aj ,Dj)
2
j=1)×D3 × . . .×DN ) ∩ X̂N,N−2((Aj ,Dj)

N
j=1).

Proposition 4.4. Let Dj ⊂ Cnj be a hyperconvex domain and let Aj ⊂

Dj be locally pluriregular, compact and locally L-regular, j = 1, . . . , N. Put

XN,k := XN,k((Aj ,Dj)
N
j=1). Then

L(z) := h
A1×...×AN ,X̂N,k

(z) =

max
{1

k

N
∑

j=1

hAj ,Dj
(zj), max

j=1,...,N
{hAj ,Dj

(zj)}
}

=: R(z)

for every z = (z1, . . . , zN ) ∈ X̂N,k.

Proof. Note that in view of the assumptions hAj ,Dj
is continuous, j =

1, . . . , N, and so is L (the last observation follows from [11]).

Observe that the inequality L ≥ R is obvious and R is from the defining
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family for L, so we only need to prove the opposite inequality.

We may assume that Dj is relatively compact and strongly pseudoconvex,

j = 1, . . . , N .

We have (ddcL)n = 0 on the set X̂N,k \ (A1 × . . . × AN ) =: V. Moreover,

for any z0 ∈ ∂V there is

lim inf
V ∋z→z0

(R(z)− L(z)) ≥ 0,

from which follows (in view of the domination principle)

R ≥ L on X̂N,k \ (A1 × . . .×AN ).

Thus R ≥ L on X̂N,k. �

Example 4.5. Let 0 < r < R be two real numbers. Let Dj = Bnj
(R) ⊂ Cnj

be the euclidean open ball with center at 0 and radius R and let Aj = Bnj
(r)

be the euclidean closed ball with center at 0 and radius r, j = 1, . . . , N. Then

hAj ,Dj
= max

{

0,
log

||·||
r

log R
r

}

, j = 1, . . . , N , and thus

hA1×...×AN ,B(z) = max







1

k

N
∑

j=1

max

{

0,
log

||zj||
r

log R
r

}

, max
j=1,...,N

{

0,
log

||zj||
r

log R
r

}







,

for z = (z1, . . . , zN ) ∈ B, where

B :=







(z1, . . . , zN ) ∈ D1 × . . .×DN :

N
∑

j=1

max

{

0,
log

||zj ||
r

log R
r

}

< k







.

Proposition 4.6. Let 1 ≤ k < l ≤ N. Let Dj ⊂ Cnj be a hyperconvex

domain and let Aj ⊂ Dj be compact, locally pluriregular and locally L-regular,

j = 1, . . . , N. Then

L(z) := h⋆
X̂N,k ,X̂N,l

(z) = h⋆
XN,k ,X̂N,l

(z) =

max



















0,

N
∑

j=1
hAj ,Dj

(zj)− k

l − k



















=: R(z)

for z = (z1, . . . , zN ) ∈ X̂N,l.

Proof. Observe that we only need to prove the third equality. We may as-

sume that Dj is relatively compact and strongly pseudoconvex, j = 1, . . . , N .

Observe that the inequality ≥ is obviuos, as the function R belongs to the
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defining family for L. All we need to show is the opposite inequality.

For any j = 1, . . . , N choose an increasing sequence (Ks
j )s∈N of holomorphi-

cally convex locally L-regular compacta in Dj containing Aj and such that
⋃∞

s=1K
s
j = Dj (this is possible by the existence of an exhausting sequence

of holomorphically convex compacta in Dj and using [14]).

Define

Ls(z) := h
Xs

N,k
,X̂N,l

(z),

z ∈ X̂N,l, where Xs
N,k := XN,k((Aj ,K

s
j )

N
j=1) (the (N, k)-crosses are defined

for open Dj ’s. However, in our context, the definition of Xs
N,k - formally

the same as the definition of the (N, k)-cross - makes sense, as it is only

set-theoretical).

Notice that the functions Ls are all continuous (see [11]).

For a fixed s ∈ N there is

Ls(z) ≥ max



















0,

N
∑

j=1
hAj ,Dj

(zj)− k

l − k



















.

Furthermore, (ddch
Xs

N,k
,X̂N,l

)n = 0 on Vs := X̂N,l\X
s
N,k and for any z0 ∈ ∂Vs

there is

lim inf
Vs∋z→z0

(R(z) − Ls(z)) ≥ 0,

from which follows that R ≡ Ls, s ∈ N, and so R ≡ L. �
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