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Abstract. We present some basic properties of the so called boundary relative ex-

tremal function and discuss boundary pluripolar sets and boundary pluripolar hulls. We

show that for B-regular domains the boundary pluripolar hull is always trivial on the

boundary of the domain and present a “boundary version” of Zeriahi’s theorem on the

completeness of pluripolar sets.

1. Introduction

Throughout the paper D will denote a bounded domain in Cn, PSH(D) the family
of all plurisubharmonic functions on D and A a subset in the boundary of D. For any
function u : D → R ∪ {−∞} and x ∈ D set

u∗(x) = lim sup
z→x,z∈D

u(z) = lim
r→0

sup
B(x,r)∩D

u,

the upper semicontinuous regularization of u on D. We let D be the unit disc, T the
unit circle and B the unit ball in C2.

Siciak, cf. [11] introduced the relative extremal function ω∗ where ω is defined as
follows. Given an open set D in Cn and a compact subset E of D

ω(z, E,D) = sup{u(z);u ∈ PSH(D), u ≤ 0, u ≤ −1 on E} , z ∈ D.

Siciak’s definition makes sense for nonempty subsets A of ∂D. For z ∈ D one
defines, cf. [9, 8, 4],

ω(z, A,D) = sup{u(z) : u ∈ PSH(D), u < 0, u∗ ≤ −1 on A}.

If A is empty we set ω(., A,D) ≡ 0.We will call ω∗(., A,D) the boundary relative extremal
function. It is a special case of the (regularization of) the Perron- Bremermann function
hence is always maximal in D. For a bounded function f on ∂D Perron-Bremermann
function uf is defined as

uf = sup{v ∈ PSH(D), v∗ ≤ f on ∂D}.

In Section 2 we will study ω(., A,D) somewhat further and give some additional
properties and applications of it.

Following Sibony, cf. [10], we will say that a bounded domain D ⊂ Cn is B-regular if
every f ∈ C(∂D) can be extended to a plurisubharmonic function inD that is continuous
on D. In [10] it is proved that the following statements are equivalent:

• D is B-regular;
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• For z ∈ ∂D there is u ∈ PSH(D) ∩ C(D) such that u(z) = 0 and u < 0 on
D \ {z};
• There is u ∈ PSH(D)∩C(D) such that limz→∂D u(z) = 0 and z 7→ u(z)− |z|2 ∈

PSH(D).

For a B-regular domain D if f ∈ C(∂D) then uf ∈ PSH(D)∩C(D) and uf = f on ∂D,
cf. [2].

For A ⊂ ∂D, it can happen that any u ∈ PSH(D) such that u∗|A = −∞ assumes
the value −∞ automatically on a bigger set in D. For instance, set B = {(z1, z2) ∈
C2, |z21 |+ |z22 | < 1}. Let A1 ⊂ T be the closure of a half-circle. Set A = A1 × {0}. Any
u ∈ PSH(B) such that u∗ ≡ −∞ on A is identically −∞ in {z ∈ C, |z| < 1} × {0}. The
phenomenon is similar to the occurrence of pluripolar hull.

We will call a subset A ⊂ ∂D b-pluripolar (boundary pluripolar) if there exists a
u ∈ PSH(D), u ≤ 0, u 6≡ −∞, such that A ⊂ {u∗ = −∞} and we will call a subset
A ⊂ ∂D completely b-pluripolar if there exists a u ∈ PSH(D), u < 0, u 6≡ −∞,
such that {z ∈ ∂D, u∗(z) = −∞} = A. Zeriahi showed in [14] that if E ⊂ D is
pluripolar and an Fσ as well as a Gδ, then E is completely pluripolar in D i.e there
exists u ∈ PSH(D) with E = {z ∈ D : u(z) = −∞} if and only if E coincides with its
pluripolar hull. We will define the boundary pluripolar hull in Definition 3.3 and employ
ω(., A,D) to describe this in Section 3 and 4. We will show that for B-regular domains

the b-pluripolar hull Â ⊂ D of a b-pluripolar set A is contained in A ∪ D. It is per-
haps mildly surprizing that no hull is picked up at the boundary. In particular we have
Corollary 4.5 that for B-regular domains every b-pluripolar set that is simultaneously
Fσ and Gδ is completely b-pluripolar.

In his thesis, [12] Wikström considered the function V ∈ PSH(B):

V (z) = log
|z2|2

1− |z1|2

and observed that V |{z2=0} = −∞ inside B, but V ∗(z1, 0) = 0 for |z1| = 1, cf. [13],
Example 5.5. This example suggested to us that something like Corollary 4.5 could
hold.

Acknowledgement. The first author is supported by the international PhD programme
”Geometry and Topology in Physical Models” of the Foundation for Polish Science and
he wishes to thank Professor Armen Edigarian for his help to accomplish this work.

2. Properties of ω

In this section we collect some elementary properties of ω.

Proposition 2.1. If A1 ⊂ A2 ⊂ ∂D, then

ω(., A2, D) ≤ ω(., A1, D).

If D1 ⊂ D2 and A ⊂ ∂D1 ∩ ∂D2, then on D1 we have

ω(., A,D2) ≤ ω(., A,D1).

Proposition 2.2. Let D ⊂ Cn be B-regular and A ⊂ ∂D. Then ω∗(., A,D) = 0 on
∂D \ (A)o.
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Proof. If ∂D \ (A)o is empty there is nothing to prove, if not let x ∈ ∂D \ (A)o and
r > 0. Let z ∈ B(x, r)∩∂D \A and let U be a neighborhood of A that does not contain
z. Then there exists f ∈ C(∂D, [−1, 0]) such that f = −1 on A and f = 0 on ∂D \ U .
As D is B-regular and f ∈ C(∂D) then uf ∈ PSH(D) ∩ C(D) and uf = f on ∂D. We
have uf ≤ ω(., A,D). Thus

0 = uf (z) ≤ sup
B(x,r)∩D

uf ≤ sup
B(x,r)∩D

ω(., A,D) ≤ 0.

This holds for all r > 0. Hence 0 = limr→0 supB(x,r)∩D ω(., A,D) = ω∗(x,A,D). �

Proposition 2.3. Let D ⊂ Cn be B-regular and A ⊂ ∂D. Then for all x in the interior
of A we have

lim
y→x,y∈D

ω(y, A,D) = −1.

Proof. Let x ∈ A be an interior point of A. Take 0 < r < dist(x, ∂A). Let f ∈
C(∂D, [−1, 0]) such that f = −1 on B(x, r/2)∩ ∂D and f = 0 on ∂D \B(x, r). As D is
B-regular then uf ∈ PSH(D) ∩ C(D) and uf = f on ∂D. Observe that for all negative
v ∈ PSH(D) with v∗|A ≤ −1, one has v ≤ uf hence ω(., A,D) ≤ uf . Thus

−1 ≤ lim inf
y→x y∈D

ω(y, A,D) ≤ lim sup
y→x y∈D

ω(y, A,D) ≤ lim sup
y→x

uf (y) = uf (x) = −1.

�

Corollary 2.4. If D ⊂ Cn is a B-regular domain and A ⊂ ∂D is open, then ω(., A,D) ∈
PSH(D) and it coincides with ω∗(., A,D).

Proof. We know that ω(., A,D) ≤ ω∗(., A,D) onD. As ω(., A,D) is bounded, ω∗(., A,D)
belongs to PSH(D) and is negative. From Proposition 2.3 we have ω∗(., A,D) ≤ −1 on
A. Hence ω∗(., A,D) ≤ ω(., A,D) on D. �

Proposition 2.5. Let D be a B-regular domain in Cn and A ⊂ ∂D be open. Suppose
that {Dj} is an increasing sequence of B-regular domains in D such that D = ∪Dj and
A ⊂ ∩j∂Dj. Then

lim
j→∞

ω(x,A,Dj) = ω(x,A,D), for x ∈ D.

Proof. Set v = limω(., A,Dj). By Proposition 2.1, ω(., A,Dj+1) ≤ ω(., A,Dj) and by
Corollary 2.4, ω(., A,Dj) ∈ PSH(Dj), hence v ≥ ω(., A,D). Now v ∈ PSH(D) and
v∗ ≤ −1 on A, therefore v ≤ ω(., A,D). It follows that v = ω(., A,D). �

Problem 2.6. Can the condition that A is open, be dropped?

Proposition 2.7. For D ⊂ Cn a B-regular domain and A ⊂ ∂D we have

ω(., A,D) = sup
A⊂V, V open

ω(., V,D).

Corollary 2.8. Let D ⊂ Cn be a B-regular domain and (Aj)j be a decreasing sequence
of open sets in ∂D. Then (ω(., Aj, D))j increases to ω(z, A,D) where A = ∩Aj.

Proposition 2.9. Assume that A1 ⊂ A2 ⊂ · · · ⊂ ∂D are open sets. Put A = ∪Aj.
Then

lim
j→∞

ω(z, Aj, D) = ω(z, A,D), z ∈ D.
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Proof. AsA is open then ω(., A,D) ∈ PSH(D) Corollary 2.4. Set u(z) = limj→∞ ω(z, Aj, D)
for z ∈ D. Note that the sequence is decreasing, so u ∈ PSH(D) and u ≥ ω(., A,D).
On the other hand, u ≤ ω(., Aj, D) means that u∗ ≤ −1 on all Aj hence u∗ ≤ −1 on A.
That means u is in the family defining ω(., A,D). �

Proposition 2.10. Let D ⊂ Cn be a domain and Aj ⊂ ∂D be an increasing sequence
of compact sets then

lim
j→∞

ω(., Aj, D) = ω(., A,D)

where A = ∪Aj.

Proof. It is clear that ω(., A,D) ≤ limω(., Aj, D). Let ε > 0, x ∈ D then for all j > 0
there is uj ∈ PSH(D) negative such that ω(x,Aj, D) ≤ uj(x) + ε. Set Vj = {u∗j <
−1 + ε} ∩ ∂D, recall that uj ≤ ω(., Vj, D) + ε. We get an open neighborhood V of A on
setting V = ∪jVj. By Proposition 2.9 and Proposition 2.1 one has

ω(x,A,D) ≤ lim
j
ω(x,Aj, D) ≤ lim

j→∞
ω(x, Vj, D) = ω(x, V,D) + ε ≤ ω(x,A,D) + ε.

This for all x ∈ D and ε > 0.

�

Proposition 2.11. Let D be an open set in Cn, and let A1 ⊃ A2 ⊃ A3 ⊃ · · · be a
sequence of compact subsets of ∂D. Then at each point in D

lim
j→∞

ω(., Aj, D) = ω(., A,D),

where A = ∩∞j=1Aj.

Proof. Clearly, ω(., A1, D) ≤ ω(., A2, D) ≤ . . . hence the limit exists. Take a negative
function v ∈ PSH(D) such that v∗|A ≤ −1. As the set V = {z ∈ D : v(z)− ε < −1} is
open and A is compact, we can find an open set U containing A such that U ∩D ⊂ V .
There exists j0 such that for each j ≥ j0, Aj ⊂ U. Therefore v−ε ≤ ω(., Aj, D) for j ≥ j0.
As a consequence, v−ε ≤ limj→∞ ω(., Aj, D), and so ω(., A,D)−ε ≤ limj→∞ ω(., Aj, D),
this for all ε > 0. The opposite inequality is trivial. �

Now we would like to know whether one can define ω on PHS(D)∩C(D). Consider
the function

ω̃(z, A,D) = sup{u(z);u ∈ PSH(D) ∩ C(D);u ≤ 0;u|A ≤ −1}.
For all A ⊂ ∂D we have ω̃(., A,D) ≤ ω(., A,D) and ω̃(., A,D) = ω̃(., A,D).

Proposition 2.12. Let D ⊂ Cn be B-regular, A ⊂ ∂D then

lim sup
y→x

ω̃(y, A,D) = 0 for all x ∈ ∂D \ A,

If x is an interior point of A then

lim
y→x

ω̃(y, A,D) = −1.

Remark that for any A ⊂ ∂D the plurisubharmonic function ω̃∗(., A,D) does not belong
to the family defining ω̃(., A,D). Proposition 2.13 is connected to Problem 27.4 in [9].

Proposition 2.13. Let D be a B-regular domain in Cn and A ⊂ ∂D be closed, then

ω̃(., A,D) = ω(., A,D).
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Proof. It is clear that ω̃(., A,D) ≤ ω(., A,D). Let ε > 0 and u in the family defining
ω(., A,D) then by Wikstrom and Dini’s theorems there is v ∈ PSH(D)∩C(D) negative
such that u∗ ≤ v < −1 + ε on A that means u ≤ v ≤ ω̃(., A,D) + ε. This for all u hence
ω(., A,D) ≤ ω̃(., A,D) + ε for all ε. �

Remark 2.14. There is no hope to get ω(., A,D) = ω̃(., A,D) for every A ⊂ ∂D. For
instance if A is countable and dense in ∂D we get ω(., A,D) = 0 almost everywhere
while ω̃(., A,D) ≡ −1.

Here we look at the link between the boundary relative extremal function and the
relative extremal function ”in usual sense”. Let j > 0, A ⊂ ∂D non dense. Set
Ej = {z ∈ Cn, d(z, A) < 1/j} ∩D. Consider the function

uEj ,D(z) = sup{u(z) : u ∈ PSH(D), u < 0, u|Ej ≤ −1}.

Proposition 2.15. Let D ⊂ Cn be a bounded domain and A ⊂ ∂D be closed then

lim
j→∞

uEj ,D = ω(., A,D).

Proof. For all j > 0 , we have uEj ,D ∈ PSH(D), uEj ,D < 0 , lim supuEj ,D ≤ −1
on A then uEj ,D ≤ ω(., A,D) as consequence limj→∞ uEj ,D ≤ ω(., A,D) Let u be in
the family defining ω(., A,D) and ε > 0 there is an open set U ⊂ Cn containing A
such that u∗ − ε < −1 on U ∩ D take j > 1 enough big such that Ej ⊂ U ∩ D then
u− ε ≤ uEj ,D ≤ limj→∞ uEj ,D. Hence ω(., A,D)− ε ≤ limj→∞ uEj ,D for all ε > 0. �

Corollary 2.16. Let A ⊂ ∂D then there is a sequence of open set Ej ⊂ D such that

lim
j→∞

uEj ,D = ω(., A,D), almost everywhere.

3. Boundary pluripolar sets and boundary pluripolar hulls

As in the classical case the boundary relative extremal function can be used to
describe boundary pluripolar sets. The characterizations of Sadullaev [9], Levenberg-
Poletsky [7], also cf. [4], of pluripolar hulls and their proof also hold for b-pluripolar
sets. We will include this result with its very similar proof for convenience of the
reader in Proposition 3.5. As in the classical case a countable union of b-pluripolar
set is b-pluripolar (Proposition 3.6). However, in contrast with the classical case where
the relative extremal function ω∗(., E,D) of a subset E ⊂ D has the property that
{z ∈ E,ω∗(z, E,D) > −1} is pluripolar, the set {z ∈ A, ω∗(z, A,D) > −1} is not in
general b-pluripolar and the behavior of ω∗(z, A,D) at the boundary of D is not very
informative, see Example 3.4.

Definition 3.1. We say that a subset A ∈ ∂D is a b-pluripolar set if there exists a
u ∈ PSH(D), u ≤ 0, u 6≡ −∞, such that u∗ = −∞ on A.

It is well known that a compact set K ⊂ T in the boundary of the unit disc D is
b-polar if and only if it has arc length 0, and that not all such sets are polar. Hence
there exist b-polar sets that are not polar. This example can be modified to the several
variables situation.
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Example 3.2. Let K be a b-polar set in T that is not polar and let u be a subharmonic
function on D such that u ≤ 0 and u∗|K = −∞. Consider the function v on the unit
ball B ⊂ C2 defined by v(z, w) = u(z2 + w2). Let

A = {(z, w) ∈ ∂B : z2 + w2 ∈ K}.
Then v∗ = −∞ on A, hence A is b-pluripolar. Now if A would be pluripolar we could
find, invoking Josefson’s theorem, cf. [5], f ∈ PSH(C2) so that f |A = −∞. Consider for
α ∈ [0, 2π) the function fα on C defined by fα(ζ) = f(ζ cosα, ζ sinα). It is subharmonic
or identically equal to −∞. Take a branch h(z) of

√
z with branch cut not meeting K.

Then fα ◦ h = −∞ on K. It follows that fα ≡ −∞. In particular f = −∞ on R2 ⊂ C2,
which is not a pluripolar set. The conclusion is that A is not pluripolar.

Definition 3.3. Let A ⊂ ∂D be b-pluripolar. The set

{z ∈ D : u∗(z) = −∞, for all u ∈ PSH(D) with u 6≡ −∞, u < 0, u∗|A = −∞}

will be called the b-pluripolar hull of A and will be denoted by Â.

Example 3.4. Let B be the unit ball B(0, 1) and A = Aα = {(eiφ cosα, eiψ sinα) :
φ, ψ ∈ [0, 2π)}, the distinguished boundary of a polydisc ∆α contained in B. We have
ω∗(., A,B) ≡ 0 on ∂B, see Proposition 2.2. But every u ∈ PSH(B) such that u∗|A ≡ −∞
is identically −∞ on the polydisc, hence u ≡ −∞ on B and A is not b-pluripolar..

Similarly, for Em = ∪mj=1Aαj
, we also find ω∗(., Em,B) ≡ 0 on ∂B. However, if we

choose (αj)j a dense sequence in (0, 2π) we find for z ∈ ∂B
0 = lim

m→∞
ω∗(z, Em,B) 6= ω∗(z, lim

m→∞
Em,B) = −1.

Indeed, if u ∈ PSH(D) is negative and u∗ ≤ −1 on all Em we have u ≤ −1 on ∪j∆αj
= B.

Proposition 3.5 (cf. [9, 7, 4]). Let D ⊂ Cn be a domain in Cn and A ⊂ ∂D. Then
the following conditions are equivalent :

(1) ω∗(., A,D) ≡ 0;
(2) A is b-pluripolar.

In this case
Â ∩D = {z ∈ D, ω(., A,D) < 0}.

Proof. If A is b-pluripolar, take any v ∈ PSH(D), v < 0, v 6≡ −∞ such that v∗ = −∞
on A. Then εv ≤ ω(., A,D) for all ε > 0, hence if for some z ω(z, A,D) < 0 then

v(z) = −∞, and it follows that z ∈ Â. Moreover, for all z such that v(z) > −∞ we find
ω(z, A,D) = 0, hence ω∗(., A,D) ≡ 0.
Assume now that ω∗(., A,D) ≡ 0. Let z ∈ D be such that ω(z, A,D) = 0. For j ∈ N
there is a negative uj ∈ PSH(D) with u∗j |A ≤ −1 and uj(z) > −2−j. Define

v(y) =
∞∑
j=1

uj(y) (y ∈ D).

Observe that v(z) > −1, hence as a limit of a decreasing sequence of negative plurisub-
harmonic functions, v ∈ PSH(D), negative and not identically −∞. Moreover, v∗|A ≡
−∞. We conclude that A is b-pluripolar and z 6∈ Â. �

Proposition 3.6. Let D be a bounded domain in Cn. Suppose that A = ∪jAj, where
Aj ⊂ ∂D for j = 1, 2, · · · . If ω∗(., Aj, D) ≡ 0 for each j, then ω∗(., A,D) ≡ 0.
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Proof. By Proposition 3.5 above, we can choose vj ∈ PSH(D) such that vj < 0 on D
and v∗j |Aj ≡ −∞. Take a point a ∈ (D \ ∪jv∗−1j ({−∞})). By multiplying each of the

functions v∗j by a suitable positive constant, we may suppose that vj(a) > −2−j. As in
the proof of the proposition above we check that v =

∑
j vj ∈ PSH(D), v < 0 on D ,

v 6≡ −∞ on D and v∗ = −∞ on A. By the previous proposition , ω∗(., A,D) ≡ 0. �

Problem 3.7. Let D1 and D2 be B-regular domains in Cn with D1 ⊂ D2 and A ⊂
∂D1 ∩ ∂D2 be b-pluripolar for D1. Is A b-pluripolar for D2?

The problem above can be seen as the boundary version of Lelong first problem. An
positive answer will be the boundary version of Josefson theorem.

The result below illustrates the role of the boundary relative extremal function in
computing the boundary pluripolar hull in the boundary. For a complete characteriza-
tion of the hull see Proposition 3.10 and Theorem 3.12.

Proposition 3.8. Let D ⊂ Cn be a B-regular domain and A ⊂ ∂D be b-pluripolar.
Then A ⊂ Â ⊂ A.

Proof. Let z ∈ ∂D \ A and V ⊂ ∂D be an open neighborhood of A such that z 6∈ V.
Take (z′m)m ⊂ ∂D \ V converging to z.

By Corollary 2.4, ω(., V,D) ∈ PSH(D), by Proposition 2.3, ω∗(., V,D) = −1 on V.

By Proposition 2.2 there is zm ∈ B(z′m, 1/m) ∩ D \ Â such that ω(zm, V,D) > −2−m.
Clearly

zm → z when m→∞

ω(zm, V,D)→ 0 when m→∞.
For j > 0 we set uj = 2jω(., V,D). As uj(zm) tends to zero then there is M > 1 such

that uj(zm) > −1 for all m > M. As the points z1, · · · , zM do not belong to Â then
there is u ∈ PSH(D)−, u = −∞ on A such that u(zm) > −1 for 0 < m ≤M. We set

vj = 2−j max{uj, u}.

Remark that vj(zm) > −2−j for all m > 0 and v∗j = −1 on A. Set

v(y) =
∞∑
j=1

vj(y) (y ∈ D).

Note that −1 ≤ −
∑

2−j ≤ v(zm) for all m > 0, v is negative in D and v∗|A ≡ −∞.
v is the limit of a decreasing sequence of plurisubharmonic functions (its partial sums).
Since v is not identically −∞, we conclude that v ∈ PSH(D) and −1 ≤ v∗(z) this

means that z 6∈ Â. �

Remark 3.9. If A is an Fσ set, then Â ∩ ∂D = A.

Proposition 3.10. Let D ⊂ Cn be a B-regular domain and let A ⊂ ∂D be b-pluripolar.
Then

Â ∩ ∂D = A.

Proof. Obviously A ⊂ Â ∩ ∂D. Now let z ∈ ∂D \ A. As A is b-pluripolar there exists
u ∈ PSH(D) such that u < −1, u∗ = −∞ on A. If u∗(z) is finite, there is nothing to
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prove. We will assume u∗(z) = −∞ and construct a function v ∈ PSH(D)∩C(D \ {z})
so that u+ v < 0 in D and (u+ v)∗(z) is finite. This then shows that z /∈ Â. Let

Ez(j) = {w ∈ ∂D :
1

4j + 1
≤ |z − w| ≤ 1

4j
}.

Because u∗ is usc on ∂D and A is b-pluripolar, on Ez(j), u
∗ assumes a maximum

Mj ≤ −1 at wj ∈ Ez(j) since Ej(z) is not b-pluripolar then Mj > −∞. Let fj ≤ 0 be
continuous on ∂D, fj > u∗ and fj(wj) < u∗(wj) + 1 and let 0 ≤ χj ≤ 1 be a continuous
function on ∂D with χj(wj) = 1 and compactly supported in 1

4j+2
≤ |z − w| ≤ 1

4j−1 ,

and of sufficiently small size to be determined later. Then

u∗ ≤
∞∑
j=1

fjχj on ∂D.(1)

and

u∗(wj) ≥
∞∑
j=1

fjχj(wj)− 1 for every j.(2)

Let Fj be the harmonic function on D, continuous on ∂D with boundary values −fjχj.
The series

∑∞
j=1 Fj represents a monotonically increasing sequence of harmonic functions

that are continuous up to ∂D. By choosing the support of χj sufficiently small, we can
achieve, in view of Harnack’s theorem, that the series converges uniformly on compact
sets in D \ {z} and represents a harmonic function on D that is continuous on D \ {z}
and has boundary values

∑∞
j=1−fjχj.

Now let vj = uFj
be the Perron-Bremermann function of −fjχj. Then 0 ≤ vj =

v∗j ≤ Fj on D with equality on ∂D because D is B-regular, and vj is a continuous
plurisubharmonic function. It follows that the series v =

∑∞
j=1 vj is also uniformly

convergent on compact sets in D \ {z}, hence it represents a plurisubharmonic function
that is continuous up to ∂D \ {z} with boundary values

∑∞
j=1 Fj on ∂D \ {z}. Then by

(1) and (2) we have

u∗ + v = lim
k→∞

(u∗ +
k∑
j=1

vk) ≤ 0 and u∗(wj) + v(wj) ≥ −1 for all j.

Because u∗ + v∗ is usc, we have that u∗(z) + v∗(z) ≥ −1. �

Remark 3.11. Of course, if the domain is not B-regular, Proposition 3.10 is no longer
valid. Set ∆ = {0 < |z| < 1, |w| < 1} and let A = {(z, 1), |z| = 1}, then A is b-

pluripolar, which is seen by considering log |w − 1| and Â = {(z, 1), |z| ≤ 1}. The same
applies for domains with (fine) analytic discs in the boundary, cf. [10].

Theorem 3.12. Let D ⊂ Cn be B-regular and A ⊂ ∂D be a b-pluripolar set. Then

Â = A ∪ {z ∈ D, ω(z, A,D) < 0}.

Proof. Combine Proposition 3.5 and Proposition 3.10 above. �

Conjecture 3.13. Let A ⊂ ∂D whose compact sets are all b-pluripolar, then A must
be b-pluripolar.
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4. Completeness of b-pluripolar sets

Definition 4.1. We say that a subset A ∈ ∂D is completely b-pluripolar if there exists
a u ∈ PSH(D), u < 0, u 6≡ −∞, such that {z ∈ ∂D, u∗(z) = −∞} = A.

Zeriahi,[14] gave conditions under which a pluripolar set is completely pluripolar.
Here we adapt Zeriahi’s result to boundary pluripolar sets. Our result requires only
minor adaptations.

Proposition 4.2. Let D ⊂ Cn be a B-regular domain and A ⊂ ∂D be a b-pluripolar
set. Suppose that F and K are compact subsets of D with F ⊂ Â and K ⊂ D \ Â. Then
for all C > 0 there exists ψK ∈ PSH(D) ∩ C(D) so that ψK < 0, ψK < −C on F , and
ψK > −1 on K.

Proof. Let a ∈ K ⊂ D \ Â. Then there exists u ∈ PSH(D) and negative so that

u∗ = −∞ on Â and u∗(a) > −∞. Set M = sup{u∗(z)− u∗(a), z ∈ D}. Then

w(z) =
u(z)− u∗(a)

2(|M |+ 1)
− 1/2, for z ∈ D,

is plurisubharmonic and w < 0 on D, w∗|Â = −∞, w∗(a) = −1/2. By [13], Theorem
4.1, we can find a sequence in PSH(D)∩C(D) that decreases to w∗ on D. In particular
there exists in view of Dini’s theorem an fa ∈ PSH(D) ∩ C(D) and negative such that
fa < −C on F and fa(a) ≥ w∗(a) = −1/2 > −1. Then there exists a neighborhood Va
of a so that fa(z) > −1 for all z ∈ Va. By compactness we can find a finite subset of
I ⊂ K such that K ⊂ ∪a∈IVa . Set ψK = max{fa, a ∈ I} then

ψK < 0, ψK ∈ PSH(D)∩C(D), ψK(z) < −C for all z ∈ F , and ψK > −1 on K.

�

Lemma 4.3. Let D be a B-regular domain in Cn. Let A ⊂ ∂D be b-pluripolar and let
K ⊂ ∂D \ A be compact. Then there exists a L ⊂ D \ Â such that every element of K
is limit of a sequence in L and L ∪K is compact.

Proof. As K is compact there exist for every j ∈ N Nj points zjl ∈ K, 1 ≤ l ≤ Nj

such that K ⊂ ∪Nj

l=1B(zjl, 1/j). Because Â has empty interior, we can find a point

wjl ∈ D ∩B(zjl, 1/j) \ Â. Now let L = {wlj : 1 ≤ l ≤ Nj, j ∈ N}. Then the limit points
of L belong to K hence K ∪L and if z ∈ K ∩B(zlj, 1/j) then |z−wlj| < 2/j, therefore
z is a limit of a subsequence of L. �

Theorem 4.4. Let D be a B-regular domain in Cn. Let A ⊂ ∂D be b-pluripolar, F an Fσ
set, G a Gδ set in ∂D such that F ⊂ A ⊂ G. Then there exists an E ⊂ ∂D and a negative
function ψ ∈ PSH(D) such that F ⊂ E ⊂ G, where E = {z ∈ ∂D : ψ∗(z) = −∞}.

Proof. Set F = ∪jFj where (Fj)j≥1 is an increasing sequence of compact sets in Â, and

∂D \ G = ∪jK̃j where (K̃j)j is an increasing sequence of compact sets in ∂D \ G. By

Lemma 4.3 each K̃j can be enlarged to a compact set Kj ⊂ D \ Â. Replacing Kj+1 by
Kj+1 ∪ Kj if necessary, we can assume Kj ⊂ Kj+1. By Proposition 4.2 for each j > 0
there exists ψj ∈ PSH(D) ∩ C(D) with

(3) ψj ≤ −2j on Fj, and ψj ≥ −1 on Kj.
9



The function ψ =
∑∞

j=1 2−jψj is negative. For z ∈ ∂D \G there is J > 0 so that z ∈ KJ

and a sequence (zm)m ⊂ KJ converging to z we find that for all m

(4) ψ(zm) =
J∑
j=1

2−jψj(zm) +
∞∑

j=1+J

2−jψj(zm) ≥ inf
KJ

J∑
j=1

2−jψj − 1 > −CJ > −∞,

where CJ depends only on KJ , in view of the continuity of the ψj. It follows that ψ is
plurisubharmonic on D as limit of a decreasing sequence of plurisubharmonic functions.
It satisfies ψ∗ ≡ −∞ on F because of (3). Finally if z ∈ ∂D \ G, then z ∈ Kj ∩D for
some j and by (4) ψ∗(z) > Cj, hence ψ∗ > −∞ on ∂D \G. Set E = {z ∈ ∂D, ψ∗(z) =
−∞} then F ⊂ E ⊂ G. �

Corollary 4.5. Let D be a B-regular domain in Cn. Every b-pluripolar set A ⊂ ∂D
that is a Gδ as well as an Fσ is completely b-pluripolar.

Proof. By Proposition 3.10 Â∩ ∂D = A. We apply Theorem 4.4 with F = A = G. The
theorem gives us a negative ψ ∈ PSH(D) with A = {z ∈ ∂D with ψ∗(z) = −∞}. In
particular, ψ 6≡ −∞ on D and A is completely b-pluripolar. �
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