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WEAK SOLUTIONS TO THE COMPLEX MONGE-AMPÈRE

EQUATION ON HERMITIAN MANIFOLDS

S LAWOMIR KO LODZIEJ AND NGOC CUONG NGUYEN

Dedicated to Duong H. Phong on the occasion of his 60th birthday

Abstract. The main result asserts the existence of continuous solutions of
the complex Monge-Ampère equation with the right hand side in Lp, p > 1,
on compact Hermitian manifolds.

Introduction

Let (X,ω) be a compact Hermitian manifold of complex dimension n. We study
the weak solutions to the complex Monge-Ampère equation

(ω + ddcϕ)n = fωn, ω + ddcϕ ≥ 0,

where 0 ≤ f ∈ Lp(X,ωn), p > 1, and dc = i
2π (∂̄−∂), dd

c = i
π∂∂̄, with the displayed

inequality understood in the sense of currents.
We follow the pluripotential approach introduced by S. Dinew and the first

author in [7], where L∞ estimates for the above equation were obtained. Here we
refine those estimates and prove the existence of continuous solutions.

Theorem 0.1. Let (X,ω) be a compact Hermitian manifold, dimX = n. Let
0 ≤ f ∈ Lp(X,ωn), p > 1, be such that

∫
X fω

n > 0. There exist a constant c > 0
and a function u ∈ C(X) satisfying the equation

(ω + ddcu)n = cf ωn, ω + ddcu ≥ 0,

in the weak sense.

The main tool is a generalized version of the comparison principle due to Bedford-
Taylor [1, 2]. We call it modified comparison principle just for a convenient refer-
ence. In its formulation we use a constant B > 0 such that

(0.1)

{
−Bω2 ≤ 2nddcω ≤ Bω2,

−Bω3 ≤ 4n2dω ∧ dcω ≤ Bω3.

We denote by PSH(ω) the set of ω-plurisubharmonic functions on X (see Sec-
tion 1).

Theorem 0.2 (modified comparison principle). Let (X,ω) be a compact Hermitian
manifold and suppose that ϕ, ψ ∈ PSH(ω) ∩ L∞(X). Fix 0 < ε < 1 and set

m(ε) = infX [ϕ− (1 − ε)ψ]. Then, for any 0 < s < ε3

16B , we have
∫

{ϕ<(1−ε)ψ+m(ε)+s}

ωn(1−ε)ψ ≤ (1 +
s

εn
C)

∫

{ϕ<(1−ε)ψ+m(ε)+s}

ωnϕ,

where C is a uniform constant depending only on n,B.
1
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It was shown in [7] that the comparison principle which is valid on Kähler man-
ifolds (see [17]) is no longer true on general Hermitian manifolds.

The complex Monge-Ampère equation on complex Hermitian manifolds was first
studied by Cherrier [4, 5, 6] and Hanani [13, 14]. There has been a renewed interest
recently in the works of Guan - Li [11] and Tosatti - Weinkove [21, 22]. The
breakthrough was made by Tosatti and Weinkove [22] who proved the existence
and uniqueness of the smooth solution to complex Monge-Ampère equation on a
general compact Hermitian manifold. Since then more papers appeared (e.g., [9],
[12], [19], [20], [27]), some in relation to the Chern-Ricci flow. It was shown in [9, 10],
[23, 24, 25] that the flow enjoys many common properties with the Kähler-Ricci
flow. In the study of the latter the weak solutions of the complex Monge-Ampère
equation play an important role, and thus the investigation of the Hermitian case
seems to be well motivated.

The method based on the modified comparison principle can also be applied in
the case when X = Ω is a bounded open set in C

n. We consider the Dirichlet
problem for the Monge-Ampère operator and generalize the stability estimates [15]
from the Kähler setting to the Hermitian one.

Corollary 0.3. Consider Ω be a bounded open set in C
n and ω be a Hermitian

metric in C
n. Let u, v ∈ PSH(ω) ∩C(Ω̄) be such that

(ω + ddcu)n = fωn, (ω + ddcv)n = gωn,

with 0 ≤ f, g ∈ Lp(Ω, ωn), p > 1. Then

‖u− v‖L∞(Ω̄) ≤ sup
∂Ω

|u− v|+ C‖f − g‖
1
n

Lp(ωn),

where C depends only on Ω, ω and p.

Thanks to the domination principle and the stability estimate the Dirichlet prob-
lem for Monge-Ampère operator (with the background metric ω) is solvable for the
right hand side in Lp, p > 1.

Corollary 0.4. There exists a unique continuous solution to the Dirichlet problem
(4.1) in a C∞ strictly pseudoconvex domain.

The note is organized as follows. We recall some basic properties of ω- plurisub-
harmonic functions on complex Hermitian manifolds in Section 1. Section 2 is de-
voted to prove the modified comparison principle. Then the domination principle
in the local case is inferred in Section 3. The stability estimates and the Dirichlet
problem for complex Monge-Ampère in a bounded domain in C

n are studied in Sec-
tion 4. In Section 5 we show L∞ a priori estimates and the existence of continuous
solutions to complex Monge-Ampère equations on a compact Hermitian manifold.
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H. Phong in appreciation of his wisdom which reaches far beyond mathematics.
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1. Basic properties of ω-psh functions in the Hermitian setting

Let Ω be an open set in C
n and ω a Hermitian metric in C

n. We collect here some
basic facts about ω-plurisubharmonic (ω-psh for short) functions. We refer to [7]
for more discussion. Recall that we use the normalisation d = ∂+ ∂̄, dc = i

2π (∂̄−∂),

ddc = i
π∂∂̄.

Definition 1.1. Let u : Ω → [−∞,+∞[ be a upper semi-continuous. Then u is
called ω-psh if u ∈ L1

loc(Ω, ω
n) and ddcu+ ω ≥ 0 as a current.

Denote by PSH(Ω, ω) the set of ω-psh functions in Ω (when Ω is clear from
the context, we write PSH(ω) ). We often use the short-hand notation ωu :=
(ω + ddcu). Following Bedford-Taylor [2], one defines the wedge product

ωv1 ∧ ... ∧ ωvk

for v1, ..., vk ∈ PSH(ω) ∩ L∞(Ω), 1 ≤ k ≤ n; proceeding by induction over k.
For k = 1 the definition is given by classical distribution theory. Suppose that for
1 ≤ k ≤ n− 1 the current

T = ωv1 ∧ ... ∧ ωvk
is well defined. Fix a small ball B in Ω and a strictly psh function ρ such that
ddcρ ≥ 2ω in B. Put γ = ddcρ−ω and ul = ρ+ vl ∈ PSH(B)∩L∞(B), then T can
be written in B as a linear combination of positive currents

(1.1) ddcuj1 ∧ ... ∧ dd
cujl ∧ γ

k−l, 1 ≤ j1 < ... < jl ≤ k, 1 ≤ l ≤ k.

We know that there are sequences of smooth ω-psh function {vjl }
∞
j=1 which decrease

to vl, 1 ≤ l ≤ k (by Demailly’s regularization theorem for quasi-psh functions).
Since T is a linear combination of positive currents of the form (1.1), we obtain by
the results from [2]

T = lim
j→∞

Tj = lim
j→∞

ωvj1
∧ ... ∧ ωvj

k

weakly.

Thus, T is a positive current of bidgree (k, k). Moreover,

dT =

k∑

l=1

dω ∧ ωv1 ∧ ...ω̂vl ... ∧ ωvk ;

dcT =

k∑

l=1

dcω ∧ ωv1 ∧ ...ω̂vl ... ∧ ωvk ;

ddcT = 2
∑

1≤l<m≤k

dω∧dcω∧ωv1∧...ω̂vl ...ω̂vm ...∧ωvk+

k∑

l=1

ddcω∧ωv1∧...ω̂vl ...∧ωvn .

The notation ω̂vl means that this term does not appear in the wedge product. Now
we define for u ∈ PSH(ω) ∩ L∞(Ω)

ddcu ∧ T := ddc(u ∧ T )− du ∧ dcT + dcu ∧ dT − uddcT.

The right hand side is well defined by the above formulas for dT, dcT and ddcT .
Let {uj}∞j=1 be a sequence of smooth ω-psh functions decreasing to u. We have

ddcu ∧ T = lim
j→∞

ddcuj ∧ Tj weakly.

Note here that for any test form ϕ of bidgree (n− k − 1, n− k − 1)

du ∧ dcT ∧ ϕ = −dcu ∧ dT ∧ ϕ.
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Thus,

ωu ∧ T = ω ∧ T + ddcu ∧ T := ω ∧ T + ddc(uT )− 2du ∧ dcT − uddcT

is a positive current of bidgree (k + 1, k + 1). In the special case when v1 = ... =
vn = v ∈ PSH(ω) ∩ L∞(Ω) we get the definition of Monge-Ampère operator

ωnv := ωv ∧ ... ∧ ωv,

(n factors on the right hand side) which is a Radon measure. Finally, we state for
the later reference a convergence result which follows also from the corresponding
statement in [2] applied to currents of the form (1.1).

Proposition 1.2. Let v1, ..., vk ∈ PSH(ω) ∩ L∞(Ω), 1 ≤ k ≤ n. Suppose that the

sequences of bounded ω-psh functions {vj1}
∞
j=1, ...,{v

j
k}

∞
j=1 decrease (or uniformly

converge) to v1, ..., vk respectively. Then

lim
j→∞

ωvj1
∧ ... ∧ ωvj

k

= ωv1 ∧ ... ∧ ωvk weakly.

In particular, if {uj}
∞
j=1 ∈ PSH(ω)∩L∞(Ω) decreases (or uniformly converges) to

u ∈ PSH(ω) ∩ L∞(Ω), then

lim
j→∞

ωnuj
= ωnu weakly.

Let now (X,ω) be a compact Hermitian manifold, with dimCX = n. The above
(local) construction applies in this setting.

Definition 1.3. Let u : X → [−∞,+∞[ be an upper semi-continuous function.
Then, u is called ω-psh if u ∈ L1(X,ωn) and ddcu+ ω ≥ 0 as a current.

Denote by PSH(ω) the set of ω-psh functions on X . By the definition u ∈
PSH(ω) if and only if u ∈ PSH(Ω, ω) for any coordinate chart Ω ⊂⊂ X . Using
partition of unity, we define the Monge-Ampère operators ωnu for u ∈ PSH(ω) ∩
L∞(X). It is also clear that Proposition 1.2 holds in this setting.

2. The modified comparison principle

Let (X,ω) be a compact Hermitian manifold, dimCX = n. It is known (see [7])
that the comparison principle is not true on a general compact Hermitian manifold.
We shall use two lemmata to prove the main theorem of this section (Theorem 2.3).
From the proof of Proposition 3.1 in [1] and the approximation result in [3] we have
the following statement.

Lemma 2.1. For T := (ω + ddcv1) ∧ ... ∧ (ω + ddcvn−1), where v1, ..., vn−1 ∈
PSH(ω) ∩ L∞(X) and for ϕ, ψ ∈ PSH(ω) ∩ L∞(X) we have

∫

{ϕ<ψ}

ddcψ ∧ T ≤

∫

{ϕ<ψ}

ddcϕ ∧ T +

∫

{ϕ<ψ}

(ψ − ϕ) ddcT.

A weaker version of the comparison principle was shown in [7].

Lemma 2.2. Let ϕ, ψ ∈ PSH(ω) ∩ L∞(X). Then there is a constant Cn = C(n)
such that, for B sup{ϕ<ψ}(ψ − ϕ) ≤ 1,

∫

{ϕ<ψ}

(ω+ddcψ)n ≤

∫

{ϕ<ψ}

(ω+ddcϕ)n+CnB sup
{ϕ<ψ}

(ψ−ϕ)

n−1∑

k=0

∫

{ϕ<ψ}

ωkϕ∧ω
n−k.

We are ready to prove the modified comparison principle.
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Theorem 2.3. Let ϕ, ψ ∈ PSH(ω) ∩ L∞(X). Fix 0 < ε < 1 and set m(ε) =

infX [ϕ− (1− ε)ψ]. Then for any 0 < s < ε3

16B ,
∫

{ϕ<(1−ε)ψ+m(ε)+s}

ωn(1−ε)ψ ≤ (1 +
sB

εn
C)

∫

{ϕ<(1−ε)ψ+m(ε)+s}

ωnϕ,

where C is a uniform constant depending only on n.

Proof. We wish to apply Lemma 2.2 with (1− ε)ψ +m(ε) + s in place of ψ. Note
that on U(ε, s) = {ϕ < (1− ε)ψ +m(ε) + s},

sup
U(ε,s)

[(1− ε)ψ +m(ε)− ϕ+ s] ≤ s.

Therefore, in view of Lemma 2.2, it is enough to estimate

n−1∑

k=0

∫

U(ε,s)

ωkϕ ∧ ωn−k.

For k = 0, ..., n, set

ak =

∫

U(ε,s)

ωkϕ ∧ ωn−k.

Let δ := ε3

16B . We shall verify that for 0 < s < δ

(2.1) ε a0 ≤ a1 + δ B a0, and ε a1 ≤ a2 + δ B (a1 + a0),

and for 2 ≤ k ≤ n− 1,

(2.2) ε ak ≤ ak+1 + δ B (ak + ak−1 + ak−2).

Let us assume for a moment that (2.1) and (2.2) are true. It follows from the first
inequality of (2.1) that

(2.3) a0 ≤ d1 a1 with d1 =
1

ε− δ B
.

From the second inequality of (2.1) and (2.3) we have

a0 ≤ d1 d2 a2 and a1 ≤ d2 a2,

with 1/d2 := ε − δ B (1 + d1). Using (2.2) and the induction we get that, for
k = 0, ..., n− 1,

(2.4) ak ≤ dk+1 ... dn an

where d0 := 0, 1/d1 = ε− δ B, and for j ≥ 1,

1/dj+1 = ε− δ B (1 + dj + dj−1 dj).

Furthermore, since δ B = ε3

16 , by an elementary calculation, one gets that

(2.5) ε−1 < dj < 2ε−1 ∀j ≥ 1.

In particular dj are positive and finite. It concludes for any 0 ≤ k ≤ n− 1 and for
0 < s < δ,

ak ≤ dk+1...dn an ≤
C

εn
an.

It remains to verify (2.2) (as (2.1) is its consequence with the convention that ak = 0
for k < 0). Indeed, since

ε ω ≤ ω + ddc[(1− ε)ψ +m(ε) + s] and U(ε, s) = {ϕ < (1− ε)ψ +m(ε) + s},
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it follows from Lemma 2.1 that

ε

∫

U(ε,s)

ωkϕ ∧ ωn−k ≤

∫

U(ε,s)

ω(1−ε)ψ ∧ ωkϕ ∧ ωn−k−1 ≤

∫

U(ε,s)

ωk+1
ϕ ∧ ωn−k−1 +R,

where

R =

∫

U(ε,s)

[(1 − ε)ψ +m(ε) + s− ϕ]ddc
(
ωkϕ ∧ ωn−k−1

)
≤ sB (ak + ak−1 + ak−2).

Thus, for 0 < s < δ = ε3

16B ,

εak ≤ ak+1 + δ B(ak + ak−1 + ak−2).

The theorem follows. �

3. The domination principle

Let Ω be a bounded open set in C
n. The constant B > 0 is defined as in (0.1)

for Ω̄. The next theorem is an analogue of the modified comparison principle for a
bounded open set in C

n.

Theorem 3.1. Fix 0 < ε < 1. Let ϕ, ψ ∈ PSH(ω) ∩ L∞(Ω) be such that
lim infζ→z∈∂Ω(ϕ−ψ)(ζ) ≥ 0. Suppose that M = supΩ(ψ−ϕ) > 0, and ω+ ddcψ ≥

εω in Ω. Then, for any 0 < s < ε0 := min{ εn

16B ,M},
∫

{ϕ<ψ−M+s}

ωnψ ≤

(
1 +

sB

εn
Cn

)∫

{ϕ<ψ−M+s}

ωnϕ,

where Cn is a uniform constant depending only on n.

Proof. It is very similar to the proof of the modified comparison principle. The
lemmata we need have now the following form.

Lemma 3.2. Let T := (ω+ddcv1)∧...∧(ω+dd
cvn−1) with v1, ..., vn−1 ∈ PSH(ω)∩

L∞(Ω) be a positive current of bidegree (n−1, n−1). Let ϕ, ψ ∈ PSH(ω)∩L∞(Ω).
If lim infζ→z∈∂Ω(ϕ− ψ)(ζ) ≥ 0, then

∫

{ϕ<ψ}

ddcψ ∧ T ≤

∫

{ϕ<ψ}

ddcϕ ∧ T +

∫

{ϕ<ψ}

(ψ − ϕ) ddcT.

Lemma 3.3. Let ϕ, ψ ∈ PSH(ω)∩L∞(Ω) be such that lim infζ→z∈∂Ω(ϕ−ψ)(ζ) ≥
0. Suppose that B sup{ϕ<ψ}(ψ − ϕ) ≤ 1. Then,

∫

{ϕ<ψ}

ωnψ ≤

∫

{ϕ<ψ}

ωnϕ +B sup
{ϕ<ψ}

(ψ − ϕ)

(
Cn

n−1∑

k=0

∫

{ϕ<ψ}

ωkϕ ∧ ωn−k

)
,

where the constant Cn depends only on n.

Having those the proof goes exactly as the one of Theorem 2.3. �

As a consequence we obtain the domination principle.

Corollary 3.4. Let Ω be a bounded open set in C
n. Let u, v ∈ PSH(ω) ∩ L∞(Ω)

be such that lim infζ→z∈∂Ω(u− v)(ζ) ≥ 0. Suppose that (ω+ ddcu)n ≤ (ω+ ddcv)n.
Then v ≤ u in Ω.
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Proof. First, we may assume that lim infζ→z∈∂Ω(u − v)(ζ) ≥ 2α > 0. Otherwise,
replace u by u + 2α and then let α → 0. Thus there is a relatively compact open
set Ω′ such that u(z) ≥ v(z) +α for z ∈ Ω \Ω′. By subtracting the same constant,
we also assume that u, v ≤ 0. We argue by contradiction. Suppose that {u < v}
is non empty. Since Ω is bounded, there is a strictly psh function ρ ∈ C2(Ω̄) such
that −C ≤ ρ ≤ 0 in Ω, for some constant 0 < C. Since, u, v, ρ are bounded in
Ω, then after multiplying ρ by a small positive constant we see that there exist
0 < ε, τ << 1/2 such that

ddcρ ≥ 2 ε ω, (1− τ)1/n + (2τ)1/n ≤ 1 + ε,

and

{u < (1 − τ)1/nv + (2τ)1/nu+ ρ} ⊂⊂ Ω

is non empty. Put v̂ := (1− τ)1/nv + (2τ)1/nu+ ρ. Since ωnv ≥ ωnu , it follows that

ωnv̂ ≥
[
(1− τ)1/nωv + (2τ)1/nωu

]n
≥ (1− τ)ωnv + 2τ ωnu ≥ (1 + τ)ωnu .

Thus,

(3.1) ω + ddcv̂ ≥ εω and ωnv̂ ≥ (1 + τ)ωnu

in Ω. Let us denote by U(s) the set {u < v̂ −M + s} with M = supΩ(v̂ − u) > 0.
Then for any 0 < s < M ,

U(s) ⊂⊂ Ω and sup
U(s)

{(v̂ −M + s)− u} = s.

It follows from (3.1) that the assumptions of Theorem 3.1 are fulfilled for ϕ := u,

ψ := v̂ −M + s. Hence, for any 0 < s < ǫ0 = min{ εn

16B ,M},

0 <

∫

U(s)

(ω + ddcv̂)n ≤

(
1 +

sB

εn
Cn

)∫

U(s)

ωnu .

Then using (3.1), we get for 0 < s < ǫ0

(3.2) 0 < τ

∫

U(s)

ωnu ≤
sBCn
εn

∫

U(s)

ωnu .

Therefore 0 < τ ≤ sBCn

εn . This is impossible when 0 < s is small enough. Thus,
the proof follows. �

4. The Dirichlet problem in a bounded domain in C
n

Denote by β the standard Kähler form ddc‖z‖2 in C
n and by ω an arbitrary

Hermitian form in C
n. Let Ω be a bounded open set in C

n. We write Lp(ωn) for
Lp(Ω, ωn) and consider the Dirichlet problem for the Monge-Ampère equation with
the background metric ω. Given 0 ≤ f ∈ Lp(ωn), p > 1, and φ ∈ C(∂Ω), we seek
for a solution to

(4.1)





u ∈ PSH(ω) ∩ C(Ω̄),

(ω + ddcu)n = f(z) ωn in Ω,

u = φ on ∂Ω,

where the equality in the second line is understood in sense of currents.
From the domination principle above and the stability estimates [15] we get the

following result.
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Theorem 4.1. Let Ω be a bounded open set in C
n and let u, v ∈ PSH(ω) ∩ C(Ω̄)

be such that

(ω + ddcu)n = fωn, (ω + ddcv)n = gωn

with 0 ≤ f, g ∈ Lp(ωn), p > 1. Then

‖u− v‖L∞(Ω̄) ≤ sup
∂Ω

|u− v|+ C‖f − g‖
1
n

Lp(ωn),

where C depends only on Ω, ω and p.

Proof. Suppose that Ω ⊂ B(0, R) =: BR (the ball with the origin at 0 and radius
R > 0). We write ωn = hβn in BR, where 0 < h ∈ C∞(B̄R) and we extend f, g
onto BR by setting f = g = 0 on BR \ Ω. Therefore, fh, gh ∈ Lp(BR, β

n). By
[15], there is a unique w ∈ PSH(BR)∩C(B̄R) solving (ddcw)n = |fh− gh|βn with
w = 0 on ∂BR. The stability estimate for the complex Monge-Ampère equation
proven in [15] says that

‖w‖L∞(B̄R) ≤ C1‖fh− gh‖
1
n

Lp(BR,βn),

where C1 depends only on Ω, p. Since

(ω + ddc(u + w))
n
≥ ωnu + (ddcw)n = fωn + |fh− gh|βn ≥ gωn,

and w ≤ 0 in Ω, we can apply the domination principle for ϕ := u + w and
ψ := v + sup∂Ω |u− v| to get that u+ w ≤ v + sup∂Ω |u− v| in Ω. Hence,

w − sup
∂Ω

|u− v| ≤ v − u.

Similarly, we obtain v − u ≤ −w + sup∂Ω |u− v|. So

|u− v| ≤ ‖w‖L∞ + sup
∂Ω

|u− v| ≤ sup
∂Ω

|u− v|+ C1‖fh− gh‖
1
n

Lp(BR,βn)

≤ sup
∂Ω

|u− v|+ C‖f − g‖
1
n

Lp(Ω,ωn),

where C depends on Ω, p and supΩ̄ h. �

Theorem 4.2. In a C∞ strictly pseudoconvex domain there exists a unique con-
tinuous solution to the Dirichlet problem (4.1).

Proof. Suppose that φj ∈ C∞(∂Ω) converges uniformly to φ and a sequence of
smooth functions fj > 0 converges to f in Lp(ωn). From Theorem 1.1 in [11], it
follows that for each j there exists a unique smooth solution uj ∈ PSH(ω) of the
corresponding Dirichlet problem

{
(ω + ddcv)n = fjω

n in Ω,

v = φj on ∂Ω.

Hence, from Theorem 4.1 we get that the solutions uj form a Cauchy sequence in
C(Ω̄). Thus, they converge uniformly to u in PSH(ω)∩C(Ω̄). Therefore ωnuj

con-
verge weakly to ωnu by Proposition 1.2. It means that u is a continuous solution to
the Dirichlet problem (4.1). Moreover, by the domination principle (Corollary 3.4)
this solution is unique. The proof is completed. �
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5. Existence of continuous solutions on a compact Hermitian

manifold

Let (X,ω) be a compact Hermitian manifold of complex dimension n. The
constant B > 0 in (0.1) is used throughout this section. We denote by C a generic
positive constant depending only on n,B, which may vary from line to line. We
use the notation V olω(E) :=

∫
E
ωn for any Borel set E, and write Lp(ωn) for

Lp(X,ωn).

5.1. L∞ a priori estimates. We first show how the modified comparison principle
coupled with pluripotential theory techniques leads to L∞ a priori estimates. Recall
that for a Borel set E ⊂ X

capω(E) := sup

{∫

E

(ω + ddcρ)n : ρ ∈ PSH(ω), 0 ≤ ρ ≤ 1

}
.

Proposition 5.1 ([7], Corollary 2.4). There are a universal number 0 < α =
α(X,ω) and a uniform constant 0 < C = C(X,ω) such that for any Borel subset
E ⊂ X

V olω(E) ≤ C exp

(
−α

cap
1
n
ω (E)

)
.

Consequently, by Hölder’s inequality, for any 0 ≤ f ∈ Lp(ωn), p > 1,

∫

E

fωn ≤ C‖f‖Lp(ωn) exp

(
−

α̃

cap
1
n
ω (E)

)
,

where α̃ = α/q, 1/p+ 1/q = 1.

Let h : R+ → (0,∞) be an increasing function such that

(5.1)

∫ ∞

1

1

x[h(x)]
1
n

dx < +∞.

In particular, limx→∞ h(x) = +∞. Such a function h is called admissible. If h is
admissible, then so is Ah for any number A > 0. Define

Fh(x) =
x

h(x−
1
n )
.

For such Fh we consider the family of bounded ω-psh functions such that their
Monge-Ampère measures satisfy

(5.2)

∫

E

ωnϕ ≤ Fh(capω(E)),

for any Borel set E ⊂ X . It follows from Proposition 5.1 that

Corollary 5.2. Let ϕ ∈ PSH(ω)∩L∞(X). If ωnϕ = f ωn for 0 ≤ f ∈ Lp(ωn), p >

1, then ωnϕ satisfies (5.2) for the admissible function hp(x) = C‖f‖−1
Lp(ωn) exp(ax)

with some universal number a > 0.

Our next theorem is a generalization of a priori estimates in [16], [17] from the
Kähler setting to the Hermitian one.
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Theorem 5.3. Fix 0 < ε < 1. Let ϕ, ψ ∈ PSH(ω) ∩ L∞(X) be such that ϕ ≤ 0,

and −1 ≤ ψ ≤ 0. Set m(ε) = infX [ϕ − (1 − ε)ψ], and ε0 := 1
3 min{εn, ε3

16B , 4(1 −

ε)εn, 4(1 − ε) ε3

16B }. Suppose that ωnϕ satisfies (5.2) for an admissible function h.
Then, for 0 < D < ε0,

D ≤ κ [capω(U(ε,D))] ,

where U(ε,D) = {ϕ < (1 − ε)ψ +m(ε) +D}, and the function κ is defined on the
interval (0, capω(X)) by the formula

κ
(
s−n

)
= 4Cn

{
1

[h(s)]
1
n

+

∫ ∞

s

dx

x [h(x)]
1
n

}
,

with a dimensional constant Cn.

The following lemma is the crucial step in the proof of the theorem. It is an
estimate of the capacity of sublevel sets. The proof goes through in the Hermitian
setting thanks to the modified comparison principle (Theorem 2.3).

Lemma 5.4. Fix 0 < ε < 1. Let ϕ, ψ ∈ PSH(ω)∩L∞(X) be such that −1 ≤ ψ ≤ 0.
Set m(ε) = infX [ϕ− (1− ε)ψ] and

U(ε, s) := {ϕ < (1− ε)ψ +m(ε) + s}.

For any 0 < s, t ≤ 1
3 min{εn, ε3

16B } (with B defined above) one has

[(1− ε) t]n capω(U(ε, s)) ≤ (1 + C)

∫

U(ε,s+4(1−ε) t)

ωnϕ.

Proof. Let ρ ∈ PSH(ω) be such that 0 ≤ ρ ≤ 1. It follows that

U(ε, s) ⊂ {ϕ < (1 − ε) [(1 − t)ψ + t ρ] +m(ε) + s} .

If we use the notation

m(ε, t) := inf
X

(ϕ− (1− ε) [(1− t)ψ + t ρ]) ,

then m(ε, t) ≤ m(ε) ≤ m(ε, t) + 2(1− ε) t. Hence,

U(ε, s) ⊂ V := {ϕ < (1− ε) [(1− t)ψ + t ρ] +m(ε, t) + s+ 2(1− ε) t}

⊂ U(ε, s+ 4(1− ε) t).

Then, Theorem 2.3 gives

[(1 − ε)t]n
∫

U(ε,s)

(ω + ddcρ)n ≤

∫

V

(ω + (1− ε) ddc [(1 − t)ψ + t ρ])
n

≤

(
1 +

s+ 2(1− ε) t

εn
C

)∫

V

ωnϕ

≤ (1 + C)

∫

U(ε,s+4(1−ε) t)

ωnϕ.

Thus the lemma follows. �

After rescaling t the statement of Lemma 5.4 may be rephrased
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Remark 5.5. For any 0 < s ≤ 1
3 min{εn, ε3

16B }, 0 < t ≤ 4
3 (1 − ε)min{εn, ε3

16B } we
have

tn capω(U(ε, s)) ≤ 4nC

∫

U(ε,s+t)

ωnϕ,

where C is a dimensional constant.

The proof of Theorem 5.3. For 0 < s < ε0, define

a(s) := [capω(U(ε, s))]
1
n > 0,

and
g(x) = [h(x)]

1
n .

From Remark 5.5 and the property (5.2) we infer that for any 0 < s, t < ε0

t a(s) ≤ C
a(s+ t)

g
(

1
a(s+t)

) ,

where C = 4 (1 + Cn)
1/n. We may assume C = 1 after muliplying g by an appro-

priate constant. Hence,

(5.3) t ≤
a(s+ t)

a(s) g
(

1
a(s+t)

) .

Let 0 < D < ε0. Applying (5.3) for t := D − s, and 0 < s < D we obtain

D − s ≤
a(D)

a(s)g( 1
a(D))

.

Set
s0 := sup{0 < s < D : a(D) > e a(s)}.

Since limt→s− a(t) = a(s), so s0 < D. It is clear that a(D) ≤ e a(s+
0 ), where

a(s+) = limt→s+ a(t). It follows that

D − s0 ≤ lim
s→s+0

a(D)

a(s)g( 1
a(D) )

=
a(D)

a(s+
0 )g(

1
a(D) )

≤
e

g( 1
a(D) )

.

Thus, the theorem will follow if we have the estimate of s0 from above. We define
by induction a strictly decreasing sequence which begins with s0, and for j ≥ 0,
satisfies

sj+1 := sup{0 < s < sj : a(sj) > e a(s)}.

It follows that
a(sj) ≤ e a(s+

j+1).

By monotonicity of a(t) and the definition of sj+1 there exists sj+2 < t < sj+1 such
that

e a(s+
j+2) ≤ e a(t) < a(sj).

Hence, we have

(5.4)
1

e
a(sj+1) ≤ a(s+

j+2) ≤
1

e
a(sj).

We are ready to estimate s0. Applying (5.3) for s = sj+1, t = sj − sj+1 we have

sj − sj+1 ≤ lim
x→s+

j+1

a(sj)

a(x)g
(

1
a(sj)

) =
a(sj)

a(s+
j+1)g

(
1

a(sj)

) .



12 S LAWOMIR KO LODZIEJ AND NGOC CUONG NGUYEN

Then, using the first inequality in (5.4), we get

sj − sj+1 ≤
e

g
(

1
a(sj)

) .

Setting

xj :=
1

a(sj)
,

we have, using the second inequality in (5.4) and a(sj+2) ≤ a(s+
j+2),

xj+2 − xj
xj+2g(xj+2)

=
a(sj)− a(sj+2)

a(sj)

1

g
(

1
a(sj+2)

) ≥
e− 1

e

1

g
(

1
a(sj+2)

) .

Combining the last two estimates we have

sj+2 − sj+3 ≤
e2

e − 1

xj+2 − xj
xj+2 g(xj+2)

≤
e2

e− 1

∫ xj+2

xj

dx

x g(x)
,

as xg(x) is an increasing function. Therefore,

s2 =

∞∑

j=0

(sj+2 − sj+3) ≤
e2

e− 1

∞∑

j=0

∫ xj+2

xj

dx

x g(x)
.

Since
∞∑

j=0

∫ xj+2

xj

dx

x g(x)
≤ 2

∫ ∞

x0

dx

x g(x)
≤ 2

∫ ∞

1
a(D)

dx

x g(x)
,

and

s0 = (s0 − s1) + (s1 − s2) + s2 ≤
2 e

g
(

1
a(D)

) + s2,

we have

s0 ≤
2 e

g
(

1
a(D)

) +
2e2

e− 1

∫ ∞

1
a(D)

dx

x g(x)
.

Consequently

D ≤
3e

g
(

1
a(D)

) +
2e2

e− 1

∫ ∞

1
a(D)

dx

x g(x)
.

This is equivalent to the statement of the theorem. �

In the next step, we will see how Theorem 5.3 implies a L∞ a priori bound on
the solutions of the Monge-Ampère equation with the right hand side in Lp, p > 1.

Suppose that ϕ ∈ PSH(ω) ∩ L∞(X), supX ϕ = 0 satisfies

(5.5) ωnϕ = fωn,

where 0 ≤ f ∈ Lp(ωn), p > 1. Then, ωnϕ satisfies (5.2) for h(x) = C‖f‖−1
Lp(ωn) exp(ax),

a > 0 (Corollary 5.2). Let ~ be the inverse function of κ in Theorem 5.3. Then, ~
is also an increasing function.
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Corollary 5.6. Let ϕ, f be as in (5.5). There exists a constant 0 < H = H(h),
depending only on h, X, and ω such that

(5.6) −H ≤ ϕ ≤ 0.

Moreover, we have for b ≥ 1,

(5.7) H(b−nh) ≤ bH(h).

Proof. Applying Theorem 5.3 for ψ = 0, and ε = 1/2, we have

(5.8) s ≤ κ
[
capω

(
{ϕ < inf

X
ϕ+ s}

)]
⇒ ~(s) ≤ capω

(
{ϕ < inf

X
ϕ+ s}

)

for 0 < s < ε0. Moreover, Proposition 2.5 in [7] says that

capω

(
{ϕ < inf

X
ϕ+ s}

)
≤
C|||ϕ|||L1(ωn)

| infX ϕ+ s|
,

where C and

|||ϕ|||L1(ωn) := sup

{∫

X

|ϕ|ωn : ϕ ∈ PSH(ω), sup
X
ϕ = 0

}

are uniform constants. Two last inequalities imply

~(s) ≤
C

| infX ϕ+ s|
|||ϕ|||L1(ωn).

Therefore,

| inf
X
ϕ| ≤ s+

C|||ϕ|||L1(ωn)

~(s)

for 0 < s < ε0. This gives (5.6). In order to obtain (5.7), we proceed as follows.
Let φ ∈ PSH(ω) ∩ L∞(X), supX φ = 0, be such that for any Borel set E

∫

E

ωnφ ≤ bnFh(capω(E)).

It follows from the formula for the function κ in Theorem 5.3 that the function κ′

for b−nh is bκ. The above argument implies that

| inf
X
φ| ≤ s+

C|||ϕ|||L1(ωn)

~( sb )
,

where we used the fact that the inverse of κ′(.) = bκ(.) is ~′(.) = ~(1
b .). From the

formula for the function κ associated to the admissible function h(x) = C exp(ax),
a > 0, it follows that for b ≥ 1, 0 < x < ε0,

b~(
x

b
) ≥ ~(x).

Thus, for 0 < s < ε0,

| inf
X
φ| ≤ b

(
s

b
+
C|||ϕ|||L1(ωn)

b~( sb )

)
≤ b

(
s+

C|||ϕ|||L1(ωn)

~(s)

)
.

The corollary follows. �
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5.2. Weak solutions to the complex Monge-Ampère equation. In this sec-
tion we are going to study the existence of weak solutions for the Monge-Ampère
equation on X . Let 0 ≤ f ∈ Lp(ωn), p > 1. We wish to solve the equation

(5.9)

{
u ∈ PSH(X,ω) ∩ L∞(X),

(ω + ddcu)n = f ωn.

In general ω is not closed, and then the appropriate statement of (5.9) is that there
exist a constant c > 0 and a bounded (or continuous) ω-psh function u such that

(5.10) (ω + ddcu)n = c f ωn.

Remark 5.7. If f ≡ 0, then the equation (5.10) has no bounded solution.

Proof. It is a immediate consequence of the inequality (5.14) below as an open
subset has a positive capacity. �

Theorem 5.8. Let 0 ≤ f ∈ Lp(ωn), p > 1, be such that
∫
X
fωn > 0. There exist

a constant c > 0 and u ∈ PSH(ω) ∩ C(X) satisfying the equation (5.10).

Proof. Choose fj ∈ Lp(ωn) smooth, strictly positive and converging to f in Lp(ωn).
By a theorem of Tosatti and Weinkove [22], for each j ≥ 1, there exist a unique
uj ∈ PSH(ω) ∩C∞(X) with supX uj = 0 and a unique constant cj > 0 such that

(5.11) (ω + ddcuj)
n = cj fj ω

n.

Lemma 5.9. The sequence {cj} is bounded away from 0 and bounded from above.
In particular, the family {cjfj} is bounded in Lp(ωn).

Proof. We first show that cj ’s are uniformly bounded from above. Since fj → f in

L1(ωn), we also have f
1
n

j → f
1
n in L1(ωn). Because

∫
X fω

n > 0,
∫
X f

1
nωn > 0 one

obtains ∫

X

f
1
n

j ω
n >

∫
X f

1
nωn

2
> 0

for j > j0 (j0 ≥ 1 depends on f). The pointwise arithmetic-geometric means
inequality implies that

(ω + ddcuj) ∧ ω
n−1 ≥

[
(ω + ddcuj)

n

ωn

] 1
n

ωn = (cj fj)
1
nωn.

Hence,

c
1
n

j

∫

X

f
1
n

j ω
n ≤

∫

X

(ω + ddcuj) ∧ ω
n−1.

It follows that for j > j0,

(5.12) c
1
n

j ≤
2∫

X
f

1
nωn

∫

X

(ω + ddcuj) ∧ ω
n−1.

To end the proof we need to show that the right hand side is uniformly bounded
from above. Since supX uj = 0, it follows that

(5.13)

∫

X

|uj |ω
n ≤ C1,
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with a uniform constant C1 (see e.g. [7], Proposition 2.5). Hence, using the Stokes
theorem we have ∫

X

ddcuj ∧ ω
n−1 =

∫

X

uj ∧ dd
c(ωn−1)

≤ B

∫

X

|uj |ω
n

≤ BC1.

Combining this with (5.12) we conclude that {cj} is bounded from above.
It remains to verify that {cj} is bounded away from 0. Applying Remark 5.5

for ε = 1/2, ψ = 0 and 0 ≥ ϕ ∈ PSH(ω) ∩ L∞(X), with S = infX ϕ, we get for
0 < s, t < ε0,

(5.14) tn capω(ϕ < S + s) ≤ C

∫

{ϕ<S+s+t}

ωnϕ.

From Remark 5.5 for ϕ := uj with infX uj = Sj and the Hölder inequality, it follows
that, for 0 < s, t < ε0,

tncapω(uj < Sj + s) ≤ C

∫

{uj<Sj+s+t}

cj fjω
n

≤ C cj‖fj‖Lp(ωn)[V olω({uj < Sj + s+ t})]
1
q ,

where 1/p+ 1/q = 1. Therefore, for fixed 0 < s = t < ε0,

capω(uj < Sj + s) ≤ s−nC cj‖fj‖Lp(ωn)[V olω({uj < Sj + 2s})]
1
q := cj C1s

−n,

with C1 depending also on X and f . From Theorem 5.3 we know that

s ≤ κ(capω({uj < Sj + s})) ≤ κ(cj C1s
−n).

Since limx→0+ κ(x) = 0, cj must be uniformly bounded away from 0. �

We proceed to finish the proof of the theorem.

Uniform bound of ||uj||L∞ . Since cj fj are uniformly bounded in Lp(ωn), the
L∞ a priori estimate from [7] (or Corollary 5.6) implies that {uj} are uniformly
bounded. Thus there exists H > 0 such that −H ≤ uj ≤ 0 for every j. By rescaling
we may assume from now on that H = 1. Moreover, by passing to a subsequence,
it is assumed that {uj}

∞
j=1 is a Cauchy sequence in L1(ωn) and 0 < c = lim cj .

The existence of a continuous solution. Let us use the notation

Skj := inf
X
(uk − uj) ≤ 0, Mkj := sup

X
(uk − uj) ≥ 0.

We are going to show that both Skj → 0 and Mkj → 0 as k, j → +∞, arguing by
contradiction. Suppose that Skj does not converge to 0 as k, j → +∞. So there
exists 0 < ε < 1 such that

Skj ≤ −4 ε,

for arbitrarily large k 6= j. In order to simplify the notation, we write ϕ := uk,
ψ := uj , and S := Skj , for such a pair j, k. Put

m(ε) := inf
X

[ϕ− (1− ε)ψ] .

It follows that

m(ε) ≤ S.
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Applying Remark 5.5 we have, for any 0 < s, t < ε0 (see the definition in Theo-
rem 5.3),

(5.15) tn capω(U(ε, s)) ≤ C

∫

U(ε,s+t)

ωnϕ,

where

U(ε, s) := {ϕ < (1− ε)ψ +m(ε) + s}.

Since −1 ≤ ϕ, ψ ≤ 0, S < −4ε, 0 < s, t < ε0, we have the following inclusions

U(ε, s+ t) ⊂ {ϕ < ψ + S + ε+ s+ t} ⊂ {ϕ < ψ − ε} ⊂ {|ϕ− ψ| > ε}.

Thus, from (5.15) and Hölder’s inequality, with 1/p+ 1/q = 1, we get that

tn capω(U(ε, s)) ≤ C

∫

{|ϕ−ψ|>ε}

ωnϕ

≤ C‖ckfk‖Lp(ωn) [V olω({|ϕ− ψ| > ε})]
1
q

(since ωnϕ = ckfkω
n). We have already seen that ck fk is uniformly bounded in

Lp(ωn). Hence, for fixed 0 < s = t = D < ε0,

capω(U(ε,D)) ≤ D−nC(n)‖ck fk‖Lp(ωn) [V olω({|ϕ− ψ| > ε})]
1
q

≤ C2 [V olω({|ϕ− ψ| > ε})]
1
q ,

where C2 is a constant independent of j, k. Next, we apply Theorem 5.3, after
taking values of κ of both sides of the above inequality

D ≤ κ [capω(U(ε,D))] ≤ κ
[
C2 [V olω({|ϕ− ψ| > ε})]

1
q

]
.

This leads to a contradiction because limx→0+ κ(x) = 0, and

V olω({|ϕ− ψ| > ε}) = V olω({|uk − uj| > ε}) → 0 as k, j → +∞.

Thus, Skj → 0 as k, j → +∞. Also Mkj → 0 as k, j → +∞ since Mkj = −Sjk.
Hence,

|uk − uj | ≤ |Skj |+ |Mkj | → 0 as k, j → +∞.

We conclude that {uj}
∞
j=1 is a Cauchy sequence in PSH(ω) ∩ C(X). Let u and

c be the limit points of {uj} and {cj} respectively. Then the continuous function
u ∈ PSH(ω) ∩C(X) solves

(ω + ddcu)n = c f ωn,

in the weak sense of currents. �

It is worth to record here that from the above argument we get a weak stability
statement.

Corollary 5.10. Let {uj}
∞
j=1 ⊂ PSH(ω) ∩ C(X) be such that supX uj = 0. Sup-

pose that for every j ≥ 1,

ωnuj
= fjω

n,

where fj’s are uniformly bounded in Lp(ωn), p > 1. If {uj} is Cauchy in L1(ωn),
then it is Cauchy in PSH(ω) ∩ C(X).
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